Characterization of Rice Husk for Graphene Extraction and Metallization
Main Article Content
Abstract
Rice husk, an underutilized agricultural waste product, serves as a potential precursor for graphene synthesis. This study focuses on synthesizing and characterizing graphene through the chemical exfoliation method, employing advanced analytical techniques to explore its potential applications in metallization. Graphene was produced by chemically activating rice husk ash (RHA) with potassium hydroxide (KOH) at 800 ºC. The extracted graphene underwent analysis using various techniques. X-ray Diffraction (XRD) confirmed the material's crystalline nature and graphitic structure. Fourier-Transform Infrared Spectroscopy (FTIR) identified typical functional groups present in the synthesized graphene. Raman Spectroscopy revealed significant defects and confirmed that the graphene consists of single or few-layer thin sheets. Transmission Electron Microscopy (TEM) showed the presence of thin graphene sheets and nanoparticles with sizes ranging from 1.47 nm to 5.80 nm. Ultraviolet-Visible Spectroscopy (UV-Vis) confirmed electronic structure and optical properties, essential for metallization. X-ray Fluorescence (XRF) confirmed the purity of the graphene, while Brunauer-Emmett-Teller (BET) analysis revealed a high specific surface area, making the material suitable for surface-based applications. Electrical conductivity tests demonstrated good conductivity in the lower to moderate current range. The study underscores the potential of rice husk-derived graphene for metallization, offering a cost-effective and eco-friendly synthesis method for industrial and commercial applications.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Abhilash, S.V., & Meshram, P. (2021). An overview on chemical processes for synthesis of graphene from waste carbon resources. Carbon Letters, 32(3), 653–669. https://doi.org/10.1007/s42823-021-00313-7.
Lee, S., Lee, S.J., Jung, H.S., Kim, A., Ahmed, A.T.A., Inamdar, A.I. & Kim, D.Y. (2017). Ultrathin graphene nanosheets derived from rice husks for sustainable supercapacitor electrodes. New Journal of Chemistry (1987), 41(22), 13792–13797. https://doi.org/10.1039/c7nj03136j
Taiwo, A.E., & Musonge, P. (2024). Valorization of Corn Steep Liquor for Improved Value-added Products: A Review, Recent Innovations in Chemical Engineering, 17(1), 26 – 43. DOI: 10.2174/0124055204282376231219095404
Taiwo, A.E., Madzimbamuto, T.F. & Ojumu, T.V. (2020). Development of an Integrated Process for the Production and Recovery of Some Selected Bioproducts from Lignocellulosic Materials. In: Daramola, M., Ayeni, A. (eds) Valorization of Biomass to Value-Added Commodities. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-38032-8_21
Marinho, B., Ghislandi, M., Tkalya, E., Koning, C. & De With, G. (2012). Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technology, 221, 351–358. https://doi.org/10.1016/j.powtec.2012.01.024
Ruiz-Hitzky, E., Aranda, P., Darder, M. & Ogawa, M. (2011). Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom–up processes. Chem. Soc. Rev., 40, 801-828. https://doi.org/10.1039/C0CS00052C.
Muramatsu, H., Kim, Y.A., Yang, K.S., Cruz-Silva, R., Toda, I., Yamada, T. & Saitoh, H. (2014). Rice Husk‐Derived Graphene with Nano‐Sized Domains and Clean Edges. Small (Weinheim. Print), 10(14), 2766–2770. https://doi.org/10.1002/smll.201400017.
Zhu, C., Guo, S., Fang, Y. & Dong, S. (2010). Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 4(4), 2429–2437. https://doi.org/10.1021/nn1002387.
Singh, B. (2018). Rice husk ash, Editor(s): Rafat Siddique, Paulo Cachim, In Woodhead Publishing Series in Civil and Structural Engineering, Waste and Supplementary Cementitious Materials in Concrete, Woodhead Publishing, 417-460. https://doi.org/10.1016/B978-0-08-102156-9.00013-4.
Naveen, R., Kim, H. & Shahrir, F. (2021). Graphene for next-gen microelectronics. Advanced Functional Materials. https://doi.org/10.1002/adfm.202101232.
Wallace, P.R. (1947). The Band Theory of Graphite. Physical Review, 71(9), 622–634. https://doi.org/10.1103/physrev.71.622.
Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J. & Roth, S. (2007). The structure of suspended graphene sheets. Nature, 446(7131), 60–63. https://doi.org/10.1038/nature05545.
Adetayo, A. & Runsewe, D. (2019). Synthesis and Fabrication of graphene and graphene Oxide: a review. Open Journal of Composite Materials, 09(02), 207–229. https://doi.org/10.4236/ojcm.2019.92012.
Geǐm, A.K. (2009). Graphene: Status and Prospects. Science, 324(5934), 1530–1534. https://doi.org/10.1126/science.1158877.
Urade, A. R., Lahiri, I. & Suresh, K. (2022a). Graphene Properties, Synthesis and Applications: A review. JOM, 75(3), 614–630. https://doi.org/10.1007/s11837-022-05505-8.
Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., & Shi, L. (2010). Two-Dimensional phonon transport in supported graphene. Science, 328(5975), 213–216. https://doi.org/10.1126/science.1184014.
Nair, R.R., Blake, P., Григоренко, А.Н., Новоселов, К.С., Booth, T., Stauber, T. & Geǐm, A. K. (2008a). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308. https://doi.org/10.1126/science.1156965.
Lee, C., Wei, X., Kysar, J.W. & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388. https://doi.org/10.1126/science.1157996.
Kaur, R. & Tripathi, S. (2018). Properties and applications of graphene. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2018.10.215.
Xu, Y., Sheng, K., Li, C. & Shi, G. (2010). Self-Assembled graphene hydrogel via a One-Step hydrothermal process. ACS Nano, 4(7), 4324–4330. https://doi.org/10.1021/nn101187z.
Ferrari, A.C. & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review. B, Condensed Matter, 61(20), 14095–14107. https://doi.org/10.1103/physrevb.61.14095.
Wick, P., Louw‐Gaume, A.E., Kucki, M., Krug, H.F., Kostarelos, K., Fadeel, B. & Bianco, A. (2014). Classification Framework for Graphene‐Based Materials. Angewandte Chemie International Edition, 53(30), 7714–7718. https://doi.org/10.1002/anie.201403335.
Uda, M. N. A., Gopinath, S. C. B., Hashim, U., Halim, N. H., Parmin, N. A., Uda, M. N. A. & Anbu, P. (2021). Production and characterization of graphene from carbonaceous rice straw by cost-effect extraction. 3 Biotech, 11(5). https://doi.org/10.1007/s13205-021-02740-9.
Manpetch, P., Singhapong, W. & Jaroenworaluck, A. (2022). Synthesis and characterization of a novel composite of rice husk-derived graphene oxide with titania microspheres (GO-RH/TiO2) for effective treatment of cationic dye methylene blue in aqueous solutions. Environmental Science and Pollution Research, 29(42), 63917–63935. https://doi.org/10.1007/s11356-022-20176-3.
Ferrari, A. C. & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235–246. https://doi.org/10.1038/nnano.2013.46.
Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C. & Wirtz, L. (2007). Spatially resolved Raman spectroscopy of single- and Few-Layer graphene. Nano Letters, 7(2), 238–242. https://doi.org/10.1021/nl061702a.
Malard, L., Pimenta, M., Dresselhaus, G. & Dresselhaus. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5–6), 51–87. https://doi.org/10.1016/j.physrep.2009.02.003.
Gao, W. (2015). The chemistry of graphene oxide. In Springer eBooks (61–95). https://doi.org/10.1007/978-3-319-15500-5_3