Morphological and Physico-Mechanical Properties of Nano-Graphene-Oxide from Sugarcane Bagasse for Polymer Composite Reinforcement
Main Article Content
Abstract
Graphene oxide (GO) from biomass offers a sustainable alternative to conventional graphite, yet few studies explore sugarcane bagasse (SB) as a feedstock. This research fills that gap by synthesizing GO from SB termed SBGO and reinforcing epoxy composites with it. Mature SB from Lagos, Nigeria, was processed, oxidized using KMnO₄/H₂SO₄, and purified with H₂O₂ and water washes. SBGO was characterized by BET, TEM, FTIR, UV–Vis, XRD, and Raman spectroscopy. BET analysis revealed a high Langmuir surface area of 579.3 m²/g and mesopores averaging 2.132 nm, favoring uniform dispersion. TEM showed SBGO particles ranging from 5–10 nm up to 30–40 nm agglomerates with irregular, flake-like morphologies. FTIR confirmed successful oxidation via prominent O–H (3200–3600 cm⁻¹), C=O (1700–1740 cm⁻¹), and C–O (1000–1300 cm⁻¹) peaks, while UV–Vis displayed a π–π* peak near 230 nm and an n–π* shoulder around 300 nm, evidencing successful oxidation. XRD patterns exhibited a peak at 25°–30°, indicating partial restoration of the graphitic structure. Raman spectra featured dominant D and G bands, with additional peaks at 568, 1818, 2034, 2208, 2874, and 3050 cm⁻¹ that signal defects and residual biomass features. Polymer composites (PC) with 0–2.0 g SBGO showed increased density (from 1.18 to 1.23 g/cm³) and reduced porosity (from 1.67% to 0.75%). Tensile strength and modulus peaked at 1.5 wt% SBGO, hardness rose from 20.9 to 26.1 VHN, and wear rate dropped by up to 58%. These results confirm that SB-derived GO is an effective, eco-friendly reinforcement that enhances composite strength and durability for high-performance applications.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Abhilash, S. V. & Meshram, P. (2021). An overview of chemical processes for synthesis of graphene from waste carbon resources. Carbon Letters, 32(3), 653–669. https://doi.org/10.1007/s42823-021-00313-7.
Lee, S., Lee, S. J., Jung, H. S., Kim, A., Ahmed, A. T. A., Inamdar, A. I. & Kim, D. Y. (2017). Ultrathin graphene nanosheets derived from rice husks for sustainable supercapacitor electrodes. New Journal of Chemistry (1987), 41(22), 13792–13797. https://doi.org/10.1039/c7nj03136j
Taiwo, A. E., & Musonge, P. (2024). Valorization of Corn Steep Liquor for Improved Value-added Products: A Review, Recent Innovations in Chemical Engineering, 17(1), 26 – 43. DOI: 10.2174/0124055204282376231219095404
Taiwo, A. E., Madzimbamuto, T. F. & Ojumu, T. V. (2020). Development of an Integrated Process for the Production and Recovery of Some Selected Bioproducts from Lignocellulosic Materials. In: Daramola, M., Ayeni, A. (eds) Valorization of Biomass to Value-Added Commodities. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-38032-8_21
Marinho, B., Ghislandi, M., Tkalya, E., Koning, C. & De, G. (2012). Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technology, 221, 351–358. https://doi.org/10.1016/j.powtec.2012.01.024
Onovo, H. O., Agbeleye, A. A., Akano, T. T., Oludele, D. B., Olawoyin, J. O., & Kentosu, I. S. (2024). Comprehensive Study of Extraction and Applicability of Nanosilicate Particles from Natural Waste for Biopolymer Reinforcement. Nigerian Journal of Technology (NIJOTECH), 43(4), 666-675. https://doi.org/10.4314/njt.v43i4.7
Toto, E.; Laurenzi, S. & Santonicola, M. G. (2022). Recent Trends in Graphene/Polymer Nanocomposites for Sensing Devices: Synthesis and Applications in Environmental and Human Health Monitoring. Polymers, 14(5), 1030. https://doi.org/10.3390/polym14051030
Elizalde-Herrera, F. J., Flores-Soto, P. A., Mora-Cortes, L. F., González, F. J., Soria-Arguello, G., Avalos-Belmontes, F., Narro-Céspedes, R. I. & Hoyos, M. (2024). Recent Development of Graphene-Based Composites for Electronics, Energy Storage, and Biomedical Applications: A Review. Journal of Composites Science, 8(11), 481. https://doi.org/10.3390/jcs8110481
Worku, A. K. & Ayele, D. W. (2023). Recent advances of graphene-based materials for emerging technologies. Results in Chemistry, 5, 100971. https://doi.org/10.1016/j.rechem.2023.100971.
Ungureanu, N., Vlăduț, V. & Biriș, S. -Ș. (2022). Sustainable Valorization of Waste and By-Products from Sugarcane Processing. Sustainability, 14(17), 11089. https://doi.org/10.3390/su141711089
Hassan, S., Ngo, T. & Ball, A. S. (2024). Valorisation of Sugarcane Bagasse for the Sustainable Production of Polyhydroxyalkanoates. Sustainability, 16(5), 2200. https://doi.org/10.3390/su16052200
Silva, W. C. H., Zafar, M. A., llende, A. S., Jacob, M. V. & Tuladhar, R. (2024). Sustainable Synthesis of Graphene Oxide from Waste Sources: A Comprehensive Review of Methods and Applications. Mater Circ Econ, 6(23). https://doi.org/10.1007/s42824-024-00117-w
Maroulas, K. N., Karakotsou, A., Poulopoulos, S. G., Konstantinou, I., Ladomenou, K. & Kyzas, G. Z. (2024). Graphene adsorbents and photocatalysts derived from agricultural wastes: A review, Sustainable Chemistry for the Environment, 8, 100166. https://doi.org/10.1016/j.scenv.2024.100166.
Naveen, C. J. & Gururani, P. (2022). Advances of graphene oxide based nanocomposite materials in the treatment of wastewater containing heavy metal ions and dyes. Current Research in Green and Sustainable Chemistry, 5, 100306. https://doi.org/10.1016/j.crgsc.2022.100306.
Heydari, S. F., Shahgholi, M., Karimipour, A., Salehi, M., & Galehdari, S. A. (2024). The effects of graphene oxide nanoparticles on the mechanical and thermal properties of polyurethane/polycaprolactone nanocomposites; a molecular dynamics approach. Results in Engineering, 24, 102933. https://doi.org/10.1016/j.rineng.2024.102933.
Onovo, H. O., Agbeleye, A. A., Akano, T. T., Oloyede, O. R., Oyegbami, S. O. & Amoo, E. O. (2024). Characterization of Rice Husk for Graphene Extraction and Metallization. ABUAD Journal of Engineering Research and Development (AJERD), 7(2), 521–531. https://doi.org/10.53982/ajerd.2024.0702.50-j
Ajala, O. J., Tijani, J. O., Bankole, M. T. & Abdulkareem, A. S. (2022). A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization, and application in water and wastewater treatment. Environmental Nanotechnology, Monitoring & Management, 18, 100673. https://doi.org/10.1016/j.enmm.2022.100673.
Rashid, A. B., Haque, M., Islam S. M. M. & Labib, K. M. R. U. (2024). Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications, Heliyon, 10(2), e24692. https://doi.org/10.1016/j.heliyon.2024.e24692.
Tusher, M. H., Imam A. & Khatun, M. A. (2024). Polymer Composites: Its Processing, Advantages, Properties and Applications. In: Verma, A., Gupta, H.S., Sethi, S.K. (eds) Hybrid Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2104-7_2
Sriram, G., Arunpandian, M., Dhanabalan, K., Sarojamma, V. R., David, S., Kurkuri, M. D. & Oh, T. H. (2024). Recent Progress Using Graphene Oxide and Its Composites for Supercapacitor Applications: A Review. Inorganics, 12(6), 145. https://doi.org/10.3390/inorganics12060145
Itapu, M. B. & Jayatissa, H. A. (2018). A Review in Graphene/Polymer Composites. Chemical Science International Journal, 23(3), 1–16. https://doi.org/10.9734/CSJI/2018/41031
Pathak, A. K., Garg, H., Singh, M., Yokozeki, T. & Dhakate, S. R. (2019). Enhanced interfacial properties of graphene oxide incorporated carbon fiber reinforced epoxy nanocomposite: a systematic thermal properties investigation. J Polym Res., 26, 23. https://doi.org/10.1007/s10965-018-1668-2
Hummers, W. S. & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339. https://doi.org/10.1021/ja01539a017
Joel, E. F. & Lujanienė, G. (2022). Progress in Graphene Oxide Hybrids for Environmental Applications. Environments, 9(12), 153. https://doi.org/10.3390/environments9120153
Yusaf, T., Mahamude, A. S. F., Farhana, K., Harun, W. S. W., Kadirgama, K., Ramasamy, D., Kamarulzaman, M. K., Subramonian, S., Hall, S. & Dhahad, H. A. (2022). A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications. Sustainability, 14(19), 12336. https://doi.org/10.3390/su141912336
Das, P. & Khare, P. (2023). Agricultural waste-derived graphene and its derivatives: opening the way for a sustainable environment, Editor(s): Chaudhery Mustansar Hussain, Ajeet Kumar Srivastav, Chandra Sekhar Tiwary, James M. Tour, In Woodhead Publishing Series in Electronic and Optical Materials, Graphene Extraction from Waste, Woodhead Publishing. 213-237, ISBN 9780323909143, https://doi.org/10.1016/B978-0-323-90914-3.00002-4.
Ramesh, M., Rajeshkumar, L., Srinivasan, N., Kumar, D. & Balaji, D. (2022). Influence of filler material on properties of fiber-reinforced polymer composites: A review. e-Polymers, 22(1), 898-916. https://doi.org/10.1515/epoly-2022-0080
Guari, Y. (2024). Advanced Porous Nanomaterials: Synthesis, Properties, and Applications. Nanomaterials, 14(19), 1602. https://doi.org/10.3390/nano14191602
Mersellem, K., Bouazza, D., Malpartida, I., Maireles-Torres, P., Boos, A., Demey, H., & Miloudi, H. (2024). Synthesis and Characterization of Mesoporous Materials Functionalized with Phosphinic Acid Ligand and Their Capability to Remove Cd(II). Molecules, 29(21), 5199. https://doi.org/10.3390/molecules29215199
Tadayoni, N. S., Dinari, M., Roy, A., & Karimi Abdolmaleki, M. (2024). Recent Advances in Porous Bio-Polymer Composites for the Remediation of Organic Pollutants. Polymers, 16(11), 1543. https://doi.org/10.3390/polym16111543
Shahabaz, S. M., Mehrotra, P., Kalita, H., Sharma, S., Naik, N., Noronha, D. J., & Shetty, N. (2023). Effect of Al2O3 and SiC Nano-Fillers on the Mechanical Properties of Carbon Fiber-Reinforced Epoxy Hybrid Composites. Journal of Composites Science, 7(4), 133. https://doi.org/10.3390/jcs7040133
Jiříčková, A., Jankovský, O., Sofer, Z., & Sedmidubský, D. (2022). Synthesis and Applications of Graphene Oxide. Materials (Basel, Switzerland), 15(3), 920. https://doi.org/10.3390/ma15030920
Ren, Yumei & Xu, Yuxi. (2023). Three-dimensional graphene/metal-organic framework composites for electrochemical energy storage and conversion. Chemical Communications. 59. 10.1039/D3CC01167D.
Croitoru, A.-M., Moroșan, A., Tihăuan, B., Oprea, O., Motelică, L., Trușcă, R., Nicoară, A. I., Popescu, R.-C., Savu, D., Mihăiescu, D. E., & Ficai, A. (2022). Novel Graphene Oxide/Quercetin and Graphene Oxide/Juglone Nanostructured Platforms as Effective Drug Delivery Systems with Biomedical Applications. Nanomaterials, 12(11), 1943. https://doi.org/10.3390/nano12111943
Li, F., Jiang, X. Zhao, J. & Zhang, S. (2015). Graphene oxide: A promising Nanomaterial for energy and environmental applications. Nano Energy. 16. 10.1016/j.nanoen.2015.07.014.
Truong, T. T. V., Kumar, S. R., Huang, Y.-T., Chen, D. W., Liu, Y.-K., & Lue, S. J. (2020). Size-Dependent Antibacterial Activity of Silver Nanoparticle-Loaded Graphene Oxide Nanosheets. Nanomaterials, 10(6), 1207. https://doi.org/10.3390/nano10061207
Luceño-Sánchez, J. A., Maties, G., Gonzalez-Arellano, C., & Diez-Pascual, A. M. (2018). Synthesis and Characterization of Graphene Oxide Derivatives via Functionalization Reaction with Hexamethylene Diisocyanate. Nanomaterials, 8(11), 870. https://doi.org/10.3390/nano8110870
Ochigbo, S. S., Obar, A. O., Suleiman, M. A. T. & Kovo, A. S. (2024). Facile Synthesis and Optimization of Graphene Oxide Reduction by Annealing in Hydrazine Vapour in Ambient Air for Potential Application in Perovskite Solar Cells. Science World Journal, 19(1), 194-199. https://dx.doi.org/10.4314/swj.v19i1.26
Pattammattel, A., Leppert, V. J., Forman, H. J., & O'Day, P. A., (2019). Surface characterization and chemical speciation of adsorbed iron(iii) on oxidized carbon nanoparticles. Environmental science. Processes & impacts, 21(3), 548–563. https://doi.org/10.1039/c8em00545a
Dedes, G., Karnaouri, A., & Topakas, E. (2020). Novel Routes in Transformation of Lignocellulosic Biomass to Furan Platform Chemicals: From Pretreatment to Enzyme Catalysis. Catalysts, 10(7), 743. https://doi.org/10.3390/catal10070743
Mohan, A. N., B, M. & Panicker, S. (2019). Facile synthesis of graphene-tin oxide nanocomposite derived from agricultural waste for enhanced antibacterial activity against Pseudomonas aeruginosa. Sci Rep, 9, 4170. https://doi.org/10.1038/s41598-019-40916-9
Olokoba S.W., Mciver F.A. (2024) Synthesis and Characterization of Graphene Oxide from Agricultural Waste: Cocoa pod (Theobroma Cacoa), J. Mater. Environ. Sci., 15(9), 1208-1218
Joudeh, N., Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol, 20, 262. https://doi.org/10.1186/s12951-022-01477-8
Shokat, H., & Shrikant, S. M. (2023). Structural, functional and mechanical performance of advanced Graphene-based composite hydrogels, Results in Chemistry, 6, 101029. https://doi.org/10.1016/j.rechem.2023.101029.
Shuyan, Z., Wenli, L., Huan, T., Tinglin, H. & Baoshan, X. (2022). Revisit the adsorption of aromatic compounds on graphene oxide: Roles of oxidized debris. Chemical Engineering Journal, 450, (1), 137996, https://doi.org/10.1016/j.cej.2022.137996.
Guo, S., Garaj, S., Bianco, A., & Ménard-Moyon, C. (2022). Controlling covalent chemistry on graphene oxide. Nat Rev Phys, 4, 247–262. https://doi.org/10.1038/s42254-022-00422-w.
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A. S., Alemany, L. B., Lu, W. & Tour, J. M. (2018). ACS Nano, 12(2), 2078-2078. DOI: 10.1021/acsnano.8b00128
Ikram, R.; J. Badrul and W. Ahmad. (2020). Advances in synthesis of graphene derivatives using industrial wastes precursors; prospects and challenges. Journal of Materials Research and Technology, 9: 15924-15951. 10.1016/j.jmrt.2020.11.043.
Jiříčková, A.; O. Jankovský; Z. Sofer and D. Sedmidubský. (2022). Synthesis and Applications of Graphene Oxide. Materials, 15 (3): 920. https://doi.org/10.3390/ma15030920
Eckmann, A.; A. Felten; I. Verzhbitskiy; R. Davey and C. Casiraghi. (2013). Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects. Physical Review. 10.1103/PhysRevB.88.035426.
Safian, M. T.; U. S. Haron and M. N. Mohamad Ibrahim. (2020). A review on bio-based graphene derived from biomass wastes, BioResources, 15 (4): 9756-9785
Saha, J. K. and Dutta, A. A. (2022). Review of Graphene: Material Synthesis from Biomass Sources. Waste Biomass Valor, 13: 1385–1429. https://doi.org/10.1007/s12649-021-01577-w.
Asif, F. C. and Saha, G. C. (2023). Graphene-like Carbon Structure Synthesis from Biomass Pyrolysis: A Critical Review on Feedstock–Process–Properties Relationship. C, 9 (1): 31. https://doi.org/10.3390/c9010031
Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying graphene. Nature Nanotechnology, 8(4), 235–246. https://doi.org/10.1038/nnano.2013.46
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906–3924. https://doi.org/10.1002/adma.201001068
Kharlamova, M. V., Kramberger, C., & Chernov, A. I. (2023). Advanced Carbon Nanostructures: Synthesis, Properties, and Applications. Nanomaterials, 13(7), 1268. https://doi.org/10.3390/nano13071268.
Wu, Y., Li, Y., & Zhang, X. (2024). The Future of Graphene: Preparation from Biomass Waste and Sports Applications. Molecules (Basel, Switzerland), 29(8), 1825. https://doi.org/10.3390/molecules29081825
Zhang, H., Zhou, Y., & Li, C. (2019). Enhanced interfacial bonding in graphene-based composites. Composites Science and Technology, 183, 107773.
Joshi, N. N., Narayan, J. and Narayan, R. (2024). Multifunctional carbon-based nanostructures (CBNs) for advanced biomedical applications – a perspective and review. Mater. Adv., 5(23), 9160-9174. http://dx.doi.org/10.1039/D3MA00636K
Zheng, C., Wei, Z., Rui, Z., Yuqi, T., Kun, H., Fangfang, W., Chao, H., Yong, H., Tao, Y. & Yun, C. (2024). Fabrication and characterization of oxidized starch-xanthan gum composite nanoparticles with efficient emulsifying properties. Food Chemistry, 455, 139679. https://doi.org/10.1016/j.foodchem.2024.139679.
Yuqin, X., Yoong, X. P., Yuxin, Y., Ping, Q., Haitao, Z., Sivakumar, M., Tao, W. & Cheng, H. P. (2023). Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. 10(9). 2205292. https://doi.org/10.1002/advs.202205292.
Yoojung, C., Jae, H. K., Hyunseong, S., Seong, D. P. & Hyunseung, Y. (2024). Enhanced interfacial interaction of graphene nanoplatelets/cellulose nanofiber matrix driven by pyranine-based dispersant for efficient thermal managing materials. Composites Science and Technology, 255, 110698, https://doi.org/10.1016/j.compscitech.2024.110698.
Pinto, A. M., & Magalhães, F. D. (2021). Graphene-Polymer Composites. Polymers, 13(5), 685. https://doi.org/10.3390/polym13050685
Toplosky, V.J., Walsh, R.P., Tozer, S.W., Motamedi, F. (2000). Mechanical and Thermal Properties of Unreinforced and Reinforced Polyphenylenes at Cryogenic Temperatures. In: Balachandran, U.B., Hartwig, K.T., Gubser, D.U., Bardos, V.A. (eds) Advances in Cryogenic Engineering Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4293-3_19
Soo, Y. K., Chang, Y. L., Ji-Hun, B., Tae-Yoon, K., & Seung-Hwan, C. (2015). Enhancing the Interfacial Bonding Strength of Carbon/Epoxy Composites Using Silane-Functionalized Graphene Oxides. Meet. Abstr. MA2015-01 904. DOI 10.1149/MA2015-01/9/904
Malashin, I., Tynchenko, V., Gantimurov, A., Nelyub, V., & Borodulin, A. (2024). A Multi-Objective Optimization of Neural Networks for Predicting the Physical Properties of Textile Polymer Composite Materials. Polymers, 16(12), 1752. https://doi.org/10.3390/polym16121752
Bheel, N., Mohammed, B. S., Abdulkadir, I., Liew, M. S., & Zawawi, N. A. W. A. (2023). Effects of Graphene Oxide on the Properties of Engineered Cementitious Composites: Multi-Objective Optimization Technique Using RSM. Buildings, 13(8), 2018. https://doi.org/10.3390/buildings13082018
Siraj, S., Al-Marzouqi, A. H., Iqbal, M. Z., & Ahmed, W. (2022). Impact of Micro Silica Filler Particle Size on Mechanical Properties of Polymeric Based Composite Material. Polymers, 14(22), 4830. https://doi.org/10.3390/polym14224830
Joszko, K.; B. Gzik-Zroska; M. Gzik; W. Wolański; M. Ošlejšek; M. Jureczko and Mrowka, M. (2023). Mechanical and tribological properties of epoxy composites reinforced with food-waste fillers. Journal of Achievements of Materials and Manufacturing Engineering. 120: 49-58. 10.5604/01.3001.0054.1596.
Kurahatti, R.; A. O. Surendranathan; A. V. R. Kumar; V. Auradi; C. Wadageri and S. Kori. (2014). Mechanical and Tribological Behaviour of Epoxy Reinforced with Nano Al2O3 Particles. Applied Mechanics and Materials. 592-594. 1320-1324. 10.4028/www.scientific.net/AMM.592-594.1320.
Eqra, R.; M. H. Moghim and N. Eqra. (2021). A study on the mechanical properties of graphene oxide/epoxy nanocomposites. Polymers and Polymer Composites, 29 (9): S556-S564. doi:10.1177/09673911211011150
Arun, G. K.; S. Nikhil; R. Kesari; K. Reddy; M. E. S. Kumar and R. Pramod. (2018). Investigation on Mechanical Properties of Graphene Oxide reinforced GFRP. IOP Conference Series: Materials Science and Engineering. 310. 012158. 10.1088/1757-899X/310/1/012158.
Thamilarasan, J.; K. Karthik; B. Sethuraman; V. Ramesh; M. Kumari and S. Bishwakarma. (2023). An Investigation on the Mechanical Properties of Graphene Nanocomposite. 10.1007/978-981-99-2349-6_44.
Khun, N.; H. Zhang; L. Lim and J. Yang. (2015). Mechanical and Tribological Properties of Graphene Modified Epoxy Composites. KMUTNB International Journal of Applied Science and Technology. 10.14416/j.ijast.2015.04.001.
Loeffen, A.; D. E. Cree; M. Sabzevari and L. D. Wilson. (2021). Effect of Graphene Oxide as a Reinforcement in a Bio-Epoxy Composite. Journal of Composites Science, 5 (3): 91. https://doi.org/10.3390/jcs5030091
Ropalekar, A.; R. Ghadge and N. Anekar (2023). A review on functionalization methods of graphene oxide for enhancement in mechanical properties of epoxy composites. Materials Today Proceedings. 10.1016/j.matpr.2023.09.098.
Bellum, R.; Y. Kuppusamy; C. Durga; C. Venkatesh and G. Sridevi. (2024). Influence of graphene oxide on mechanical and microstructural properties of cement composites. Research on Engineering Structures and Materials. 10.17515/resm2024.344me0710rs.
Yuanyuan, F.; P. Bingli; L. Hongyu; Z. Yuxuan; D. Xiaofana and Y. Xinyu (2024). Mechanical and Tribological Behavior of Graphene Oxide Supported Aramid Fiber Reinforced Epoxy Resin. Journal of Polymer Materials. 1-10. 10.32604/jpm.2024.055558.
Sharma, R. and Kumar, M. (2020). Mechanical and Tribological Performance of Polymer Composite Materials: A Review. Journal of Physics: Conference Series. 1455. 012033. 10.1088/1742-6596/1455/1/012033.
Abdullah, S. and Ansari, M. N. M. (2014). Mechanical properties of graphene oxide (GO)/epoxy composites. HBRC Journal. 287. 10.1016/j.hbrcj.2014.06.001.
Soares, P. H. V., De Oliveira, P. N., Viáfara, C. C., Silva, G. G., Amurin, L. G., Da Silva, A. B. (2022). Effect of the reduced graphene oxide on the tribological behavior of UHMWPE/rGO nanocomposites under sliding contact conditions. Polymer Engineering and Science, 62(8), 2641-2656. https://doi.org/10.1002/pen.26047
Topal, E., Parmak, E. D. S., Uzunsoy, D., Cakir, O. C. (2017). Investigation of Mechanical Properties of Graphene and Reduced Graphene Oxide Reinforced Epoxy Matrix Composites. J. Test. Eval., 45(4), 1182-1191, https://doi.org/10.1520/JTE20160124
Yazid, M. H., Faris, M. A., Abdullah, M. M. A. B., Nabiałek, M., Rahim, S. Z. A., Salleh, M. A. A. M., Kheimi, M., Sandu, A. V., Rylski, A., & Jeż, B. (2022). Contribution of Interfacial Bonding towards Geopolymers Properties in Geopolymers Reinforced Fibers: A Review. Materials, 15(4), 1496. https://doi.org/10.3390/ma15041496
Qi, C., Zhangxin, G., Feng, C., Gin, B. C., Yongcun. L., Yunbo, L., Jianguo, L. (2022). Effect of GO agglomeration on the mechanical properties of graphene oxide and nylon 66 composites and micromechanical analysis. Polymer Composites, 43(11), 8356-8367. https://doi.org/10.1002/pc.27006.
Xue, S., Li, H., Guo, Y., Zhang, B., Li J. & Zeng, X. (2022). Water lubrication of graphene oxide-based materials. Friction, 10, 977–1004. https://doi.org/10.1007/s40544-021-0539-8.
Mao, K., Greenwood, D., Ramakrishnan, R., Goodship, V., Shrouti, C., Chetwynd, D., Langlois, P. (2019). The wear resistance improvement of fibre reinforced polymer composite gears, Wear, 426–427, Part B, 1033-1039. https://doi.org/10.1016/j.wear.2018.12.043.
Filizzola, A. B., Pereira, J. L. N., dos Santos, P. R., Medeiros, F. da S., do Amparo, S. Z. S., de Vasconcelos, C. K. B. & Silva, G. G. (2024). Enhanced wear resistance of epoxy coatings on steel using graphene oxide. J Coat Technol Res, 21, 215–228. https://doi.org/10.1007/s11998-023-00811-5.
Shen, M.-Y., Liao, W.-Y., Wang, T.-Q., & Lai, W.-M. (2021). Characteristics and Mechanical Properties of Graphene Nanoplatelets-Reinforced Epoxy Nanocomposites: Comparison of Different Dispersal Mechanisms. Sustainability, 13(4), 1788. https://doi.org/10.3390/su13041788.
Bhushan, B. (2013). Introduction to tribology. John Wiley & Sons. https://doi.org/10.1002/9781118403259.ch1.
Ptak, A., Taciak, P., & Wieleba, W. (2021). Effect of Temperature on the Tribological Properties of Selected Thermoplastic Materials Cooperating with Aluminium Alloy. Materials, 14(23), 7318. https://doi.org/10.3390/ma14237318.
Williams, J. A. (2014). Engineering tribology. Chapter 11 - Abrasive, Erosive and Cavitation Wear. Eds: Gwidon W. Stachowiak, Andrew W. Batchelor, Engineering Tribology (4th Ed.), Butterworth-Heinemann, 525-576. https://doi.org/10.1016/B978-0-12-397047-3.00011-4.