Appraisal of the Flooding Behaviour of Rotating Packed Beds
Main Article Content
Abstract
Rotating packed beds (RPBs) enhances mass transfer processes because a centrifugal force which is several -times greater than gravity is used as the driving force. The complexity of fluid flow across RPBs has made predicting and accurately determining their hydrodynamic behaviours difficult. The flooding point as a hydrodynamic characteristic is essential for the accurate design and scale-up of RPBs. However, variations in flooding point definitions and methodologies across the literature highlight the need for standardized approaches in studying RPB flooding phenomena. This study compared four approaches based on pressure drop fluctuations and the volume of liquid ejected from the RPB to determine the onset of flooding in RPBs using experimental results from a pilot-scale counter-current RPB. For rotational speeds of 300 -1500 rpm, gas flow rate of 100-300 Nm3/h, and liquid flow rates of 0.39-0.75 m3/h, the pressure drop varied from 314 to 2,100 Pa. Quantitative comparisons of the results based on different flooding point definitions showed wide variations with the values of the pressure drop at the onset of flooding differing by as much as 325 %. A quantitative approach based on virtual observations and the ejection of 8 % of the total liquid flow rate from the rotor’s eye is proposed as the standard method for identifying the onset of flooding in RPBs.
Article Details
References
Wojtasik-Malinowska, J., Jaskulski, M. & Jaskulski, M. (2022). CFD Simulation of Gas Pressure Drop in Porous Packing for Rotating Packed Beds (RPB) CO2 Absorbers, Environ. Sci. Pollut. Res., 29, 71857–71870. https://doi:10.1007/S11356-022-20859-X . DOI: https://doi.org/10.1007/s11356-022-20859-x
Ayash, M. A. & Mahmood, A. A. (2022). Conventional and Non-Conventional Gas-Liquid Contacting Methods: A Critical Review and a Quantitative Evaluation. AIP Conf. Proc., 2660(020073), 1-22. https://doi:doi:10.1063/5.010772 DOI: https://doi.org/10.1063/5.0107723
Shukla, C., Mishra, P. & Dash, S. K. (2023). A Review of Process Intensified CO2 Capture in RPB for Sustainability and Contribution to Industrial Net Zero. Front. Energy Res., 11, 1-17. https://doi:10.3389/fenrg.2023.1135188. DOI: https://doi.org/10.3389/fenrg.2023.1135188
Tian, W., Ji, J., Li, H., Liu, C., Song, L., Ma, K., Tang, S., Zhong, S., Yue, H. & Liang. B. (2022). Measurements of the Effective Mass Transfer Areas for the Gas–Liquid Rotating Packed Bed. Chinese J. Chem. Eng., 55, 13–19. https://doi:10.1016/j.cjche.2022.06.002. DOI: https://doi.org/10.1016/j.cjche.2022.06.002
Liu, J.F., Luo, Y., Chu, Y., Larachi, G.-W., Zou, F. & Chen, H.K. (2020). Liquid Microflow Inside the Packing of a Rotating Packed Bed Reactor: Computational, Observational and Experimental Studies. Chem. Eng. J., 386(xxx), 1-14. https://doi.org/10.1016/j.cej.2019.03.010.
Burns, J. R., Jamil, J. N. & Ramshaw, C. (2000). Process Intensification: Operating Characteristics of Rotating Packed Beds - Determination of Liquid Hold-Up for a High-Voidage Structured Packing. Chem. Eng. Sci., 55, 2401–2415. https://doi:10.1016/S0009-2509(99)00520-5. DOI: https://doi.org/10.1016/S0009-2509(99)00520-5
Hendry, J. R., Lee, J. G. M. & Attidekou, P. S. (2020). Pressure Drop and Flooding in Rotating Packed Beds. Chem. Eng. Process. - Process Intensif., 151(107908), 1-7. https://doi:10.1016/j.cep.2020.107908 . DOI: https://doi.org/10.1016/j.cep.2020.107908
Neumann, K., Hunold, S., Groß, K. & Górak, A. (2017). Experimental Investigations on the Upper Operating Limit in Rotating Packed Beds. Chem. Eng. Process. Process Intensif.,121, 240–247. https://doi:10.1016/j.cep.2017.09.003. DOI: https://doi.org/10.1016/j.cep.2017.09.003
Han-Zhuo, J.F.C., Liu, X. Z., Li, Y.B., Zhang, L. L. & Chu, G. W. (2024). Liquid Dispersion Behaviors in a Rotating Packed Bed with Different Packing Arrangements: A Comparison Study. Chem. Eng. Sci., 293(2024), 120054. https://doi.org/10.1016/j.ces.2024.120054. DOI: https://doi.org/10.1016/j.ces.2024.120054
Alatyar, A. M. & Berrouk, A. S. (2023). Hydrodynamic Behavior Of Liquid Flow in a Rotating Packed Bed. Chem. Eng. Res. Des., 197, 851–870. https://doi:10.1016/j.cherd.2023.08.032. DOI: https://doi.org/10.1016/j.cherd.2023.08.032
Liu, Y., Luo, Y., Chu, G. W., Larachi, F., Zou, H. K. & Chen, J. F. (2020). Liquid Microflow Inside the Packing of a Rotating Packed Bed Reactor: Computational, Observational And Experimental Studies. Chem. Eng. J., 386, 1–14. https://doi:10.1016/j.cej.2019.03.010. DOI: https://doi.org/10.1016/j.cej.2019.03.010
Wen, Z.N., Li, Y.B., Xu, H. Z., Xu, Y.C., Sun, C., Zou, H. K., Chu, G.W. (2023). Liquid Flow Behavior in the Concentric Mesh Packing With Novel Fiber Cross-Sectional Shape in a Rotating Packed Bed, Chemical Engineering Journal., 451(4), 1385-8947. https://doi.org/10.1016/j.cej.2022.139094. DOI: https://doi.org/10.1016/j.cej.2022.139094
Ghadyanlou, F., Azari, A. & Vatani, A. (2021). A Review of Modeling Rotating Packed Beds and Improving their Parameters: Gas–Liquid Contact. Sustainability., 13(8046), 1-42. https://doi.org/10.3390/su13148046. DOI: https://doi.org/10.3390/su13148046
Lin, C. & Liu, W. (2017). Mass Transfer Characteristics of a High-voidage Rotating Packed Bed, J. Ind. Eng. Chem., 13(1), 71-78.
Dhaneesh, K. P. & Ranganathan, P. (2022). A Comprehensive Review on the Hydrodynamics, Mass Transfer and Chemical Absorption of CO2 and Modelling Aspects of Rotating Packed Bed. Sep. Purif. Technol., 295, 121248. https://doi:10.1016/j. seppur.2022.121248. DOI: https://doi.org/10.1016/j.seppur.2022.121248
Zheng, C., Guo, K., Feng, Y.,Yang, C. & Gardner, N. C. (2000). Pressure Drop of Centripetal Gas Flow through Rotating Beds. Ind. Eng. Chem. Res., 39(3), 829–834. https://doi:10.1021/ie980703d. DOI: https://doi.org/10.1021/ie980703d
Rao, D. P., Bhowal, A. & Goswami, P. S. (2004). Process Intensification in Rotating Packed Beds (HIGEE): An Appraisal. Ind. Eng. Chem. Res., 43(4), 1150–1162. https://doi:10.1021/ie030630k. DOI: https://doi.org/10.1021/ie030630k
Neumann, K., Hunold, S., Skiborowski, M. & Górak, A. (2017). Dry Pressure Drop in Rotating Packed Beds - Systematic Experimental Studies. Ind. Eng. Chem. Res., 56(4), 12395–12405. https://doi:10.1021/acs.iecr.7b03203. DOI: https://doi.org/10.1021/acs.iecr.7b03203
Guo, F., Zheng, C., Guo, K., Feng, Y. & Gardner, N. C. (1997). Hydrodynamics and Mass Transfer in Cross-Flow Rotating Packed Bed. Chem. Eng. Sci. 52(21–22), 3853–3859. https://doi:10.1016/S0009-2509(97)00229-7. DOI: https://doi.org/10.1016/S0009-2509(97)00229-7
Sandilya, P., Rao, D. P., Sharma, A. & Biswas, G. (2001). Gas-Phase Mass Transfer in a Centrifugal Contactor. Ind. Eng. Chem. Res., 40(1), 384–392. https://doi:10.1021/ie0000818. DOI: https://doi.org/10.1021/ie0000818
Lockett, M. J. (1995). Flooding of Rotating Structured Packing and its Application to Conventional Packed Columns, Chem. Eng. Res. Des. 73, 379–384.
Singh, S. P., Wilson, J.H., Counce, R. M., Villiers-Fisher, J. F. & Jennings, H. L. (1992). Removal of Volatile Organic Compounds from Groundwater using a Rotary Air Stripper. Ind. Eng. Chem. Res. 31(2), 574–580. https://doi:10.1021/ie00002a019. DOI: https://doi.org/10.1021/ie00002a019
Rajan, S., Kumar, M., Ansari, M. J., Rao, D. P. & Kaistha, N. (2011). Limiting Gas Liquid Flows and Mass Transfer in a Novel Rotating Packed Bed (HiGee). Ind. Eng. Chem. Res., 50(2), 986–997. https://doi:10.1021/ie100899r. DOI: https://doi.org/10.1021/ie100899r
Groß, K., Neumann, K., Skiborowski, M. & Górak, A. (2018). Analysing the Operating Limits in High Gravity Equipment. Chem. Eng. Trans., 69, 661–666. https://doi:10.3303/CET1869111.
Munjal, S., Dudukovć, M. P. & Ramachandran, P. (1989). Mass-Transfer in Rotating Packed Beds-I. Development of Gas-Liquid and Liquid-Solid Mass-Transfer Correlations. Chem. Eng. Sci., 44(10), 2245–2256. https://doi:10.1016/0009-2509(89)85159-0 DOI: https://doi.org/10.1016/0009-2509(89)85159-0
Munjal, S., Dudukovć, M. P. & Ramachandran, P. (1989). Mass-Transfer in Rotating Packed Beds-II. Experimental Results and Comparison with Theory and Gravity Flow. Chem. Eng. Sci., 44(10), 2257–2268. https://doi:10.1016/0009-2509(89)85160-7. DOI: https://doi.org/10.1016/0009-2509(89)85160-7
Gładyszewski K., Grob, K., Bieberle, A., Schubert, M., Hild, M., Górak, A. & Skiborowski, M. (2021). Evaluation of Performance Improvements through Application of Anisotropic Foam Packings in Rotating Packed Beds. Chemical Engineering Science., 230, 1-13. https://doi.org/10.1016/j.ces.2020.116176. DOI: https://doi.org/10.1016/j.ces.2020.116176
Yuan, Z.G., Wang, Y. X., Liu, Y. Z., Wang, D., Jiao, W.Z. & Liang, P. F. (2022). Research and Development of Advanced Structured Packing in a Rotating Packed Bed. Chinese J. Chem. Eng., 49, 178–186. https://doi:10.1016/j.cjche.2021.12.023. DOI: https://doi.org/10.1016/j.cjche.2021.12.023
Liu, X., Jing, M., Chen, S. & Du, L. (2018). Experimental Study of Gas Pressure Drop in Rotating Packed Bed with Rotational-Stationary Packing. Can. J. Chem. Eng., 96(2), 590–596. https://doi:10.1002/cjce.22936. DOI: https://doi.org/10.1002/cjce.22936
Garba, U. Adamu, A., Triquet, T., Rouzineau, D. & Meyer, M. (2023). Experimental Study of the Effect of Viscous Media on the Hydrodynamic Characteristics of a Rotating Packed Bed. Chem. Eng. Process. - Process Intensif., 191, 1-11. https://doi:10.1016/j.cep.2023.109482 DOI: https://doi.org/10.1016/j.cep.2023.109482