Evaluation of Effective Interfacial Area in a Rotating Packed Bed Equipped with Dual Gas Inlets

Main Article Content

Usman Garba
David Rouzineau
Michel Meyer

Abstract

This study investigates the effective interfacial area in a novel rotating packed bed (RPB) equipped with dual gas inlets instead of the conventional single-gas-inlet RPB. The aim is to enhance the mass transfer efficiency of gas-liquid contacting processes in RPBs by increasing the number of gas inlets to improve the spread of gas supply into the packing. The RPB is a promising gas-liquid contactor configuration known for its intensified mass transfer characteristics. However, the impact of additional gas inlets on the effective interfacial area of the packing remains unexplored. An experimental method assessed the interfacial area under varying operational conditions which include a liquid flow rate of 0.30-0.60 m3/h, a gas flow rate of 100-300 Nm3/h, and a rotation speed of 600-1000 rpm. At operating conditions covering the maximum rotation speed of 1400 rpm, gas flow and liquid flow rates of 300 Nm3/h and 0.60 m3/h respectively, the results showed that on average, 55 to 97% of the 2400m2/m3 specific packing area can be effectively utilized for gas-liquid mass transfer during separation operations using the RPB. Compared to results reported for single-gas-inlet RPBs using similar packings, the RPB with double gas inlet proved to provide higher utilization of the packing. By simply doubling the number of gas inlets, the findings provide valuable insights into optimizing RPB designs and operations which could enhance mass transfer efficiency for various chemical and environmental applications.

Article Details

How to Cite
[1]
U. Garba, D. Rouzineau, and M. Meyer, “Evaluation of Effective Interfacial Area in a Rotating Packed Bed Equipped with Dual Gas Inlets”, AJERD, vol. 7, no. 2, pp. 39-50, Jul. 2024.
Section
Articles

References

[1] Alatyar, A. M. & Berrouk, A. S. (2023). Hydrodynamic Behavior of Liquid Flow in a Rotating Packed Bed, Chem.
Eng. Res. Des, 197(1), 851–870. www.https//:doi:10.1016/j.cherd.2023.08.032
[2] Joel, A.S., Aliyu, U.F., A. S., Olubajo, O.O. & Isa, Y.M. (2024). Performance Study on Mixed Solvent for Post‐Combustion Carbon Capture using Rotating Packed Bed Technology, Greenhouse. Gas. Sci. Technol., 14, 400–410. www.https//:doi:10.1002/ghg.2280Shukla, C., Mishra, P. & Dash, S. K. (2023). A Review of Process Intensified CO2 capture in RPB for Sustainability and Contribution to Industrial Net Zero, Front. Energy Res, 11, 1135188. www.https//:doi:10.3389/fenrg.2023.1135188.
[3] Tian, W., Ji, J., Li, H., Liu, C., Song, L., Ma, K., Tang, S., Zhong, S., Yue, H. & Lianget, B. (2022). Measurements of the Effective Mass Transfer Areas for the Gas–Liquid Rotating Packed Bed, Chinese J. Chem. Eng., 55, 13-19. www.https//:doi:10.1016/j.cjche.2022.06.002.
[4] Ghadyanlou, F., Azari, A, &. Vatani, A. (2021). A Review of Modeling Rotating Packed Beds and Improving Their Parameters: Gas–Liquid Contact. Sustainability, 13, 8046. https://doi.org/10.3390/su13148046
[5] Nugroho, M. A., Susanto, Y. B., Kamilah, V. L. & Prameswari, R. (2023). Carbon Dioxide (CO2) Absorption Process using Sodium Hydroxide (NaOH), IPTEK J. Eng., 9(1), 30. https://doi:10.12962/j23378557.v9i1.a15192
[6] Hegely, L., Roesler, J., Alix, P., Rouzineau, D. & Meyer, M. (2017). Absorption methods for the Determination of Mass Transfer Parameters of Packing Internals: A Literature Review, AIChE J. 63(8), 246–3275. https://doi:10.1002/aic.15737.
[7] Luo, Y., Luo, J. Z., Chu, G. W., Zhao, Z. Q., Arowo, M. & Chen, J. F. (2017). Investigation of Effective Interfacial Area in a Rotating Packed Bed with Structured Stainless Steel Wire Mesh Packing, Chem. Eng. Sci., 170, 347–354. https://doi:10.1016/j.ces.2016.10.023.
[8] Sheng M., Xie,C., Sun, B., Luo, Y., Zhang, L.J., Chu,G., Zou, H. & Chen, J. F. (2019). Effective Mass Transfer Area Measurement Using a CO2-NaOH System: Impact of Different Sources of Kinetics Models and Physical Properties, Ind. Eng. Chem. Res, 58(25), 11082–11092. https://doi:10.1021/acs.iecr.9b00538.
[9] Neumann, K., Hunold, S., Beer, M. D., Skiborowski, M. & Górak, A. (2018). Mass Transfer Studies in a Pilot Scale RPB with Different Packing Diameters, Ind. Eng. Chem. Res, 57(6), 2258–2266. https://doi:10.1021/acs.iecr.7b04186.
[10] Yang, K., Chu, G., Zou, H., Sun, B., Shao, L. & Chen, J.F. (2011). Determination of the Effective Interfacial Area in
Rotating Packed Bed, Chem. Eng. J, 168(3), 1377–1382. https://doi:10.1016/j.cej.2011.01.100.
[11] Yuan, Z. G., Wang, Y. X., Liu, Y. Z., Wang, D., Jiao, W.-Z. & Liang, P.F. (2022). Research and Development of Advanced Structured Packing in a Rotating Packed Bed, Chinese J. Chem. Eng, 49, 178–186. https://doi:10.1016/j.cjche.2021.12.023.
[12] Luo, Y., G Chu, G.W., Zou, H. K., Wang, F., Xiang, Y., Shao, L., & Chen, J.F. (2012). Mass Transfer Studies in a Rotating Packed Bed with Novel Rotors: Chemisorption of CO2. Ind. Eng. Chem. Res, 51(26), 9164–9172, https://doi:10.1021/ie300466f.
[13] Wu, W., Luo, Y., Chu, G. W., Su, M. J., Cai, Y., Zou, H. K. & Chen, J. F. (2020). Liquid Flow Behavior in a Multiliquid-Inlet Rotating Packed Bed Reactor with Three-Dimensional Printed Packing. Chemical Engineering Journal, 386. https://doi.org/10.1016/j.cej.2019.04.117.
[14] Elcner, J. & Jicha, M. (2020). Effect of Multiple Liquid Inlets on Mass Transfer in Rotating Packed Beds, MATEC Web Conf., 328, 02010. https://doi:10.1051/matecconf/202032802010.
[15] Gładyszewski, K., Grob, K., Bieberle, A., Schubert, M., Hild, M., Górak, A. & Skiborowski, M. (2021). Evaluation of Performance Improvements Through Application of Anisotropic Foam Packings In Rotating Packed Beds, Chemical Engineering Science ,230. https://doi.org/10.1016/j.ces.2020.116176.
[16] Garba, U., Rouzineau, D. & Meyer, M. (2023). Study of the Hydrodynamic Performance of a Compact and
Intensified G /L Contactor : the RPB,” MATEC Web Conf. 379, 04003 SFGP2022,04003,1–8,
https://doi.org/10.1051/matecconf/202337904003
[17] Luo, Y., Chu, G. W., Zou, H. K., Z. Q. Zhao, Dudukovic, M. P. & Chen, J. F. (2012). Gas-Liquid Effective Interfacial Area in a Rotating Packed Bed, Ind. Eng. Chem. Res, 51(50) 16320–16325. https://doi:10.1021/ie302531j.
[18] Guo, K., Zhang, Z., Luo, H., Dang, J. & Qian, Z. (2014). An Innovative Approach of the Effective Mass Transfer Area in the Rotating Packed Bed, Ind. Eng. Chem. Res, 53 (10), 4052–4058. https://doi:10.1021/ie4029285.
[19] Sheng, M., Xie, C., Zeng, X., Sun, B., Zhang, L., Chu, G., Luo, L., , Chen, J.F. & Zou, H. (2018). Intensification of CO2 Capture using Aqueous Diethylenetriamine (DETA) Solution from Simulated Flue Gas in a Rotating Packed Bed, Fuel, 234(15), 1518–1527. https://doi:10.1016/j.fuel.2018.07.136.
[20] Garba, U. (2023). Study of the Impact of the Morphology of a G/L Contactor on the Hydrodynamics and Mass Transfer in an RPB : Application to the Treatment of Gases in an Embedded Process, PhD Thesis, University of Toulouse, France. https://theses.hal.science/tel-04163687/
[21] Jassim, M. S., Rochelle, G., Eimer, D. & Ramshaw, C. (2007). Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed, Ind. Eng. Chem. Res, 46(9), 2823–2833. https://doi:10.1021/ie051104r.
[22] Mei-ying, W. T., Gui-sheng, D., You-zhi, Q., Qiang, L. & Song Bin, G. (2015). Experimental Study on Influential Factors of Mass Transfer in a Cross-Flow Rotating Packed Bed [In Chinese], Chin. J. Process Eng, 15(6), 929–934.
[23] Chen, Q. Y., Chu, G. W., Luo, Y., Sang, L., Zhang, L.L., Zou, H. K. & Chen, J. F. (2016). Polytetrafluoroethylene Wire Mesh Packing in a Rotating Packed Bed: Mass-Transfer Studies, Ind. Eng. Chem. Res, 55(44), 11606–11613. https://doi:10.1021/acs.iecr.6b02630.