Sparse FIR Filter Design using Double Generalized Orthogonal Matching Pursuit (DGOMP)

Main Article Content

Samuel Farayola Kolawole
Farouk Muhammad Isah
Nasiru Ameh Musa
Ashraf Adam Ahmad

Abstract

In this paper, sparse FIR filter was designed using Double Generalized Orthogonal Matching Pursuit (DGOMP) to reduce memory usage and increasing the speed thereby decreasing computational complexity of the algorithm. Mathematical models were formulated and simulations were conducted to validate the performance of the proposed method. The performance was compared with BOMP and Conventional FIR filter. The results showed that the DGOMP method achieved higher sparsity and a better approximation of an ideal filter. Additionally, the designed sparse FIR filters using DGOMP showed better performance in terms of time of execution when the signal lengths keep increasing, giving a 10% faster execution time when compared to BOMP. The passband and stopband attenuation, as well as ripple values were better, offering the flexibility of parameter adjustment. The results showed that DGOMP is a promising approach for designing sparse FIR filters.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
S. F. Kolawole, F. M. . Isah, N. A. Musa, and A. A. Ahmad, “Sparse FIR Filter Design using Double Generalized Orthogonal Matching Pursuit (DGOMP)”, AJERD, vol. 7, no. 2, pp. 115–126, Aug. 2024.
Section
Articles

References

Jiang, A., Kwan, H.K., Tang Y., & Zhu Y.(2020). Sparse FIR Filter Design via Partial 1-Norm Optimization." IEEE Transactions on Circuits and Systems II: Express Briefs, 67(8), 1482-1486. doi: 10.1109/TCSII.2019.2937343. DOI: https://doi.org/10.1109/TCSII.2019.2937343

Srivastava, S., Dwivedi, A.K., & Nagaria, D. (2020). Low Complexity FIR Filter Design using Biogeography Optimization Algorithm and its Improved Version. In 2020 IEEE Students Conference on Engineering & Systems (SCES), 1-5. doi: 10.1109/SCES50439.2020.9236706. DOI: https://doi.org/10.1109/SCES50439.2020.9236706

Jayaweera, A.L., Pakiyarajah, D., & Edussooriya, C.U.S. (2022). Minimax Design of M-D Sparse FIR Filters With Arbitrary Frequency Response Using SOCP. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(5), 2403-2407. doi: 10.1109/TCSII.2022.3160400. DOI: https://doi.org/10.1109/TCSII.2022.3160400

Z. Bai, "Sparse Bayesian learning for sparse signal recovery using ℓ₁/₂-norm," Appl. Acoustics, vol. 207, pp. 109340, 2023, doi: 10.1016/j.apacoust.2023.109340. DOI: https://doi.org/10.1016/j.apacoust.2023.109340

Xi, X., & Lou, Y. (2021). Sparse FIR Filter Design With k-Max Sparsity and Peak Error Constraints." IEEE Transactions on Circuits and Systems II: Express Briefs, 68(4), 1497-1501. doi: 10.1109/TCSII.2020.3027704. DOI: https://doi.org/10.1109/TCSII.2020.3027704

Li, Y., Zhao, J., Xu, W., & Sun, G. (2022). A Low Computational Complexity Scheme for Designing Linear Phase Sparse FIR Filters. Circuits, Systems, and Signal Processing, 41(1), 1-13. doi: 10.1007/s00034-021-01836-0. DOI: https://doi.org/10.1007/s00034-021-01836-0

Kwan, H.K., Liang, J., & Jiang, A. (2018). Sparse FIR Filter Design using Iterative MOCSA. In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS) 952-955. doi: 10.1109/MWSCAS.2018.8623954. DOI: https://doi.org/10.1109/MWSCAS.2018.8623954

Nakamoto, M., Itani, T., & Konishi, K. (2018). Optimal Least-Squares Design of Sparse FIR Filters for Big-Data Signal Processing. In 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP) 1-5. doi: 10.1109/ICDSP.2018.8631598. DOI: https://doi.org/10.1109/ICDSP.2018.8631598

Yang, Y., Zhu, W.-P., & Yan, J. (2017). Minimax design of orthogonal filter banks with sparse coefficients. In 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE) 1-4. doi: 10.1109/CCECE.2017.7946804. DOI: https://doi.org/10.1109/CCECE.2017.7946804

Bellotti, M.J., & Vucic, M. (2019). Design of Nonlinear-Phase FIR-Filters Based on Signomial Programming. In 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), 26(1) 141-146). doi: 10.1109/ISPA.2019.8868506. DOI: https://doi.org/10.1109/ISPA.2019.8868506

Yadav, S., Kumar, M., Yadav, R., & Kumar, A. (2020). Efficient Design of Sparse FIR Digital Filter. In 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). 647-651. doi: 10.1109/ICACCCN51052.2020.9362902. DOI: https://doi.org/10.1109/ICACCCN51052.2020.9362902

Srivastava, S., Dwivedi, A., & Nagaria, D. (2019). Sparse Finite Impulse Response Low Pass Filter Design using Improved Firefly Algorithm. Journal of Surface Engineered Materials and Advanced Technology, 9, 2061-2066. doi: 10.35940/ijeat.A9568.109119. DOI: https://doi.org/10.35940/ijeat.A9568.109119

Brajevic, I., & Stanimirovic, P. (2018). An improved chaotic firefly algorithm for global numerical optimization. International Journal of Computational Intelligence Systems, 12(1), 131-148. doi: 10.2991/ijcis.2018.25905187. DOI: https://doi.org/10.2991/ijcis.2018.25905187

Wang, H., Zhao, Z., & Zhao, L. (2020). Matrix Decomposition Based Low-Complexity FIR Filter: Further Results. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(2), 672–685. DOI: https://doi.org/10.1109/TCSI.2019.2946174

Maja, J. B. (2023). Design of sparse systems based on optimization methods [Review of Design of sparse systems based on optimization methods] 1–128.downloaded from : https://urn.nsk.hr/urn:nbn:hr:168:097909.

Chen, W, M. Huang X. Lou. (2018). Sparse FIR Filter Design Based on Interpolation Technique. In 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP) 1-5. doi: 10.1109/ICDSP.2018.8631685. DOI: https://doi.org/10.1109/ICDSP.2018.8631685

Premaratne, S. U., Edussooriya, C. U. S., Wijenayake, C., Bruton, L. T., & Agathoklis, P. (2018). A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding. In 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). doi: 10.1109/ICDSP.2018.8631601. DOI: https://doi.org/10.1109/ICDSP.2018.8631601

Wijesekara, R.T., Edussooriya,C.U.S., Bruton, L.T &Agathoklis, P. (2019). A 3-D Sparse FIR Frustum Filter for Enhancing Broadband Plane Waves. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(3), 497-501. doi: 10.1109/TCSII.2018.2856848. DOI: https://doi.org/10.1109/TCSII.2018.2856848

Li, H., Ying, H., & Li, E. (2022). Graph-Based Convex Optimization for Sparse FIR Filter Design. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(4), 1525-1537. doi: 10.1109/TCSI.2022.3162183.

Yu, L., & Zhao, J. (2019). Hybrid Optimization Method of Sparse FIR DFEs Based on Reweighted ℓ1-Norm Minimization and Greedy Algorithms. Electronics Letters, 55(8), 491-493. doi: 10.1049/el.2018.7438. DOI: https://doi.org/10.1049/el.2018.7438

Kwan,H.K., Liang, J . & Jiang , A . (2018). Sparse Linear Phase FIR Filter Design using Iterative CSA. In 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), 1-4. doi:10.1109/ICDSP.2018.8631659. DOI: https://doi.org/10.1109/ICDSP.2018.8631659

Li, H., Ying, H. & Liu, X. Binary generalized orthogonal matching pursuit. Japan J. Indust. Appl. Math. 41(1), 1–12 (2024). https://doi.org/10.1007/s13160-023-00585-8 DOI: https://doi.org/10.1007/s13160-023-00585-8

Chen,.& Lou ,X. (2022). Design of Linear-Phase Sparse FIR Filter Using Iterative Root Method and Improved LSQR Algorithm. IEEE Transactions n Circuits and Systems I :Regular Papers, 69(10), 3586–3598.doi:10.1109/TCSI.2022.3146438.

Chen, W., Huang, M., & Lou, X. (2019). Sparse FIR Filter Design Based on Cascaded Compensation Structure. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). 19(6) 1-5. doi:10.1109/iscas.2019.8702703. DOI: https://doi.org/10.1109/ISCAS.2019.8702703