Development of Adaptive Resource Allocation and Interference Mitigation for Spectrum Sharing in D2D-Enabled 5G Heterogeneous Networks: A Case Study of Urban Microcell Environments
Main Article Content
Abstract
Device-to-device (D2D) communication in heterogeneous networks (HetNets) poses significant challenges in resource allocation and interference management, especially within 5G networks where spectrum sharing between cellular users (CUEs) and D2D user equipment (DUEs) is critical. This study developed an adaptive resource allocation framework using Long Short-Term Reinforcement Learning (LSRL), which integrated Long Short-Term Memory (LSTM) networks with Deep Reinforcement Learning (DRL) technique. The proposed approach addressed the dynamic nature of interference in urban microcell environments by leveraging a Hierarchical Data Format (HDF5) dataset generated from network simulations. These simulations incorporate diverse scenarios, including varying user densities, transmission power levels, and interference conditions. The LSRL-based scheme was evaluated against conventional DRL methods, demonstrating notable improvements in network performance. Specifically, the proposed framework achieved up to a 6.67% increase in sum throughput and an 8.2% enhancement in power efficiency, even under dense user conditions. Additionally, the LSRL model proved resilient to variations in D2D pair distances, maintaining robust spectral efficiency and quality of service (QoS). These findings underscore the potential of the LSRL-based adaptive approach for improving resource management in 5G HetNets, particularly in dense urban deployments, and provide valuable insights for optimizing next-generation wireless communication systems.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Trabelsi, N., Fourati, L. C., & Chen, C. S. (2023). Interference Management in 5G and Beyond Networks: A Comprehensive Survey. Computer Networks 239(6):110159. doi: 10.1016/j.comnet.2023.110159
Siddiqui, M. U. A., Qamar, F., Ahmed, F., Nguyen, Q. N., & Hassan, R. (2021). Interference management in 5G and beyond network: Requirements, challenges and future directions. IEEE Access, 9, 68932-68965, doi: 10.1109/ACCESS.2021.3073543.
Jiya, E. A., Ibikunle, F. A., Oluwafemi, I. B., Adedayo, A. B., Kola-Junior, A., & Babatunde, K. S. (2022). Overview of Interference Management Techniques in 5G Cellular Networks. 2022 5th Information Technology for Education and Development (ITED), 1-7, doi: 10.1109/ITED56637.2022.10051504.
Fan, Y., Zhang, L., Li, K., Bao, M., & Lu, M. (2024, June). Deep learning-based EMI and IEMI classification in 5G-R high-speed rail wireless communications. In 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring) (pp. 1-6). IEEE. doi: 10.1109/VTC2024-Spring62846.2024.10683274
Sejan, M. A. S., Rahman, M. H., Aziz, M. A., Tabassum, R., You, Y. H., Hwang, D. D., & Song, H. K. (2024). Interference Management for a Wireless Communication Network Using a Recurrent Neural Network Approach. Mathematics, 12(11), 1755. doi: 10.3390/math12111755.
Farhan, S., & Aal-nouman, M. (2024). Reinforcement Learning-based Joint Interference Mitigation and Resource Allocation in Dense Beyond 5G Heterogeneous Networks. International Journal of Intelligent Engineering & Systems, 17(3)., doi: 10.22266/ijies2024.0630.46.
Alruwaili, O., Logeshwaran, J., Natarajan, Y., Alrowaily, M. A., Patel, S. K., & Armghan, A. (2024). Incremental RBF-based cross-tier interference mitigation for resource-constrained dense IoT networks in 5G communication system. Heliyon., doi: 10.1016/j.heliyon.2024.e32849.
Irkicatal, O. N., Ceran, E. T., & Yuksel, M. (2024). Deep Reinforcement Learning Enhanced Rate-Splitting Multiple Access for Interference Mitigation. arXiv preprint arXiv:2403.05974. Available: http://arxiv.org/abs/2403.05974
Anand, D., Togou, M. A., & Muntean, G. M. (2023). A Multi-Classification Machine Learning-Based Solution to Mitigate Co-Tier Interference in 5G HetNets. In ICC 2023-IEEE International Conference on Communications (pp. 4840-4845). IEEE, doi: 10.1109/ICC45041.2023.10278599.
Al-Jumaily, A., Sali, A., Jiménez, V. P. G., Lagunas, E., Natrah, F. M. I., Fontán, F. P., & Al-Jumeily, D. (2023). Evaluation of 5G and fixed-satellite service earth station (FSS-ES) downlink interference based on artificial neural network learning models (ANN-LMS). Sensors, 23(13), 6175. doi: 10.3390/s23136175
Udoh, R., Ukommi, U., & Ubom, E. (2023). Interference Mitigation In 5G Network Using Frequency Planning and Artificial Neural Network (ANN). Journal of Multidisciplinary Engineering Science and Technology (JMEST), 10(12), 16534-16540.
D. Anand, G. S. Member, and M. A. Togou, “A Machine Learning Solution for Video Delivery to Mitigate Co-Tier Interference in 5G HetNets,” IEEE Trans. Multimed., vol. 25, pp. 5117–5129, 2023, doi: 10.1109/TMM.2022.3187607.
Warrier, A., Al-Rubaye, S., Panagiotakopoulos, D., Inalhan, G., & Tsourdos, A. (2022, September). Interference mitigation for 5G-connected UAV using deep Q-learning framework. In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC) (pp. 1-8). IEEE. doi: 10.1109/DASC55683.2022.9925817.
Elsayed, M., & Erol-Kantarci, M. (2019). AI-enabled future wireless networks: Challenges, opportunities, and open issues. IEEE Vehicular Technology Magazine, 14(3), 70-77, doi: 10.1109/MVT.2019.2919236.
Ahmad, I., & Hussain, A. (2023). Co-channel Interference Management for the Next-Generation Heterogeneous Networks using Deep Leaning. arXiv preprint arXiv:2301.10177. Available: http://arxiv.org/abs/2301.10177
N. F. R. O. Konan, E. Mwangi, & C. Maina (2022). “Enhancement of Signal to Interference plus Noise Ratio Prediction (SINR) in 5G Networks using a Machine Learning Approach,” Int. J. Eng. Trends Technol., vol. 70, no. 10, pp. 319–328, doi: 10.14445/22315381/IJETT-V70I10P231.
Iqbal, M. U., Ansari, E. A., Akhtar, S., Rafiq, M. N., Farooq-i-Azam, M., & Hassan, B. (2023). Hybrid Learning based Radio Resource Management in 5G Heterogeneous Networks. Pakistan Journal of Engineering and Technology, 6(1), 92-97., doi: 10.51846/vol6iss1pp92-97.
Iqbal, M. U., Ansari, E. A., & Akhtar, S. (2021). Interference mitigation in HetNets to improve the QoS using Q-learning. IEEE Access, 9, 32405-32424., doi: 10.1109/ACCESS.2021.3060480.
Yang, A., Yue, X., & Ouyang, Y. (2021). Reinforcement learning assisted beamforming for inter-cell interference mitigation in 5g massive mimo networks. arXiv preprint. Available: http://arxiv.org/abs/2103.11782
Yadav, R., & Tripathi, A. (2022). 3D MIMO beamforming using spatial distance SVM algorithm and interference mitigation for 5G wireless communication network. Journal of Cases on Information Technology (JCIT), 24(4), 1-26., doi: 10.4018/JCIT.296717.
Osman, R. A., Saleh, S. N., & Saleh, Y. N. (2021). A novel interference avoidance based on a distributed deep learning model for 5G-enabled IoT. Sensors, 21(19), 6555., doi: 10.3390/s21196555.
Afolabi, A. S., Ahmed, S., & Akinola, O. A. (2021). A Reinforcement Learning Approach for Interference Management in Heterogeneous Wireless Networks. International Journal of Interactive Mobile Technologies, 15(12), doi: 10.3991/ijim.v15i12.20751.
Guo, Y., Hu, C., Peng, T., Wang, H., & Guo, X. (2020, June). Regression-based uplink interference identification and SINR prediction for 5G ultra-dense network. In ICC 2020-2020 IEEE International Conference on Communications (ICC) (1-6). IEEE., doi: 10.1109/ICC40277.2020.9149375.
Wu, D., Nekovee, M., & Wang, Y. (2020). Deep learning-based autoencoder for m-user wireless interference channel physical layer design. IEEE Access, 8, 174679-174691. doi: 10.1109/ACCESS.2020.3025597.
Wang, Y., Feng, G., Sun, Y., Qin, S., & Liang, Y. C. (2020). Decentralized learning based indoor interference mitigation for 5G-and-beyond systems. IEEE Transactions on Vehicular Technology, 69(10), 12124-12135. doi: 10.1109/TVT.2020.3012311.
Elsayed, M., Erol-Kantarci, M., & Yanikomeroglu, H. (2020). Transfer reinforcement learning for 5G new radio mmWave networks. IEEE Transactions on Wireless Communications, 20(5), 2838-2849. doi: 10.1109/TWC.2020.3044597.
Barazideh, R., Semiari, O., Niknam, S., & Natarajan, B. (2020). Reinforcement learning for mitigating intermittent interference in terahertz communication networks. In 2020 IEEE International Conference on Communications Workshops (ICC Workshops) (1-6). IEEE. doi: 10.1109/ICCWorkshops49005.2020.9145080.
Mismar, F. B., Evans, B. L., & Alkhateeb, A. (2019). Deep reinforcement learning for 5G networks: Joint beamforming, power control, and interference coordination. IEEE Transactions on Communications, 68(3), 1581-1592., doi: 10.1109/TCOMM.2019.2961332.
Mughees, A., Tahir, M., Sheikh, M. A., Amphawan, A., Meng, Y. K., Ahad, A., & Chamran, K. (2023). Energy-efficient joint resource allocation in 5G HetNet using Multi-Agent Parameterized Deep Reinforcement learning. Physical Communication, 61, 102206. doi: 10.1016/j.phycom.2023.102206
Kamruzzaman, M., Sarkar, N. I., & Gutierrez, J. (2024). Machine Learning-Based Resource Allocation Algorithm to Mitigate Interference in D2D-Enabled Cellular Networks. Future Internet, 16(11), 408. doi: 10.3390/fi16110408.