Synthesis and Application of Starch-Modified Chitosan-Silver Nanoparticle Composite as Green Corrosion Inhibitor for Mild Steel in Acidic Media
Main Article Content
Abstract
The corrosion of mild steel in acidic environments presents a significant challenge across various industries, including oil and gas, chemical processing, and manufacturing. Traditional corrosion inhibitors, while effective, often contain toxic and environmentally harmful chemicals, prompting the need for sustainable alternatives. In this study, a novel green corrosion inhibitor composed of cassava starch-modified chitosan and silver nanoparticles (AgNPs) was synthesized, characterized and application for protecting mild steel in dilute hydrochloric acid medium. The study utilized starchy extracts from waste cassava peel with chitosan synthesized from snail shells combined with green synthesis of AgNPs using phytochemicals of starch extracts as a reducing and stabilizing agent to formulate a biopolymer composite inhibitor. The starch, chitosan, and AgNPs formulation blend was varied in ratios, and inhibition effectiveness evaluated through gravimetric analysis, electrochemical measurements, and surface characterization techniques such as Fourier transform infrared spectroscopy, x-ray diffraction, and scanning electron microscopy. Findings, demonstrated that the starch-chitosan-AgNPs composite exhibited superior corrosion inhibition efficiency, reaching up to 97% at optimal starch concentrations. It also revealed that higher starch concentrations improved the inhibitor's performance due to increased surface coverage and adhesion. The inhibitor functioned by forming a protective film on the mild steel surface. The incorporation of AgNPs enhanced the inhibitor's stability and barrier properties, while the biopolymers provided biodegradability and non-toxicity. This work highlights the potential of biopolymer-based green inhibitors as sustainable alternatives to conventional corrosion inhibitors.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Groysman, A. S. (2017). Corrosion problems and solutions in oil refining and petrochemical industry, Koroze a Ochrana Materiálu, 61(3) 100-117, doi:10.1515/kom-2017-0013.
Jemini, E. T., Igbafe, S., Adeniyi, A. T., & Igbafe, A. I. (2024). Applications of green inhibitors of sugarcane bagasse and garcinia kola fruit pod for mild steel natural gas pipeline corrosion inhibition in acidic medium, Computational and Experimental Research in Materials and Renewable Energy, 7(2), 105-118, Doi.org/10.19184/cerimre.v7i2.50834
Manh, T. D., Huynh, T. H., Thi, B. V., Lee, S., Yi, J. & Dang, N. N. 2022). Corrosion inhibition of mild steel in hydrochloric acid environments containing sonneratia caseolaris leaf extract, ACS Omega. 7(10), 8874-8886. doi: 10.1021/acsomega.1c07237
Hamidi, N.A.S.M., Kamaruzzaman, W.M.I.W.M., Nasir, N.A.M., Shaifudin, M.S., & Ghazali, M.S.M. (2022). Potential application of plant-based derivatives as green components in functional coatings: A review, Cleaner Materials, 4, doi.org/10.1016/j.clema.2022.100097.
Ramasamy, P., Dubal, S.V., Jeyachandran, S., Pitchiah, S., Kannan, K., Elangovan, D., Thangadurai, T., Paramasivam, S., & Selvin, J. (2023). Control and prevention of microbially influenced corrosion using cephalopod chitosan and its derivatives: a review. International Journal of Biological Macromolecules, 242, 124924.
Ardean, C., Davidescu, C.M., Nemeş, N.S., Negrea, A., Ciopec, M., Duteanu, N., Negrea, P., Duda-Seiman, D., & Musta, V. (2021). Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. International Journal of Molecular Sciences, 22(14), 7449, doi.org/10.3390/ijms2147449.
Hefni, H.H.H., Azzam, E.M., Badr, E.A., Hussein, M. & Tawfik, S.M. (2015). Synthesis, characterization and anticorrosion potentials of chitosan-g-PEG assembled on silver nanoparticles, International Journal of Biological Macromolecules, doi.org/10.1016/j.ijbiomac.2015.11.073.
Amaraweera, S.M., Gunathilake, C., Gunawardene, O.H., Fernando, N.M., Wanninayaka, D.B., Manamperi, A., Dassanayake, R.S., Rajapaksha, S.M., Gangoda, M., Fernando, C.A.N., & Kulatunga, A.K. (2021). Preparation and characterization of biodegradable cassava starch thin films for potential food packaging applications. Cellulose, 28, 10531-10548
Wan Yusof, W. R., Sabar, S., & Zailani, M. A. (2024). Starch‐chitosan blends: A comprehensive review on the preparation, physicochemical properties and applications. Biopolymers, 115(5), e23602.
Raghavendra, N. (2024). Green silver nanoparticles/nanocomposite as a sustainable inhibitor to attenuate metal corrosion in hostile fluid environment: a review of recent developments, innovations and future opportunities. Journal of Bio-and Tribo-Corrosion, 10(4), 86.
Harsimran, S., Santosh, K., & Rakesh, K. (2021). Overview of corrosion and its control: A critical review. Proceedings on Engineering Sciences, 3(1), 13-24.
Aljibori, H. S., Alamiery, A., & Kadhum, A. A. H. (2023). Advances in corrosion protection coatings: A comprehensive review. International Journal of Corrosion Scale Inhibition, 12(4), 1476-1520.
Phull, B., & Abdullahi, A. A. (2017). Marine Corrosion. In: Reference Module in Materials Science and Materials Engineering. Oxford: Elsevier, 1-39, doi.org/10.1016/B978-044452787-5.00046-9.
Shifler, D. A. (2022). Localized Corrosion. LaQue's Handbook of Marine Corrosion, 63-121.
Katkar, V. A., & Gunasekaran, G. (2016). Galvanic corrosion of AA6061 with other ship building materials in seawater. Corrosion, 72(3), 400-412.
Malandruccolo, A. (2024). An Introduction to Stainless Steels. In Superaustenitic Stainless Steels: A Comprehensive Overview Cham: Springer Nature Switzerland, 1-71, doi.org/10.1007/978-3-031-68744-0.
Khalifeh, A. (2019). Stress corrosion cracking damages. Failure analysis, doi.org/10.5772/intechopen.80826.
Ayyagari, A., Hasannaeimi, V., Grewal, H. S., Arora, H., & Mukherjee, S. (2018). Corrosion, erosion and wear behavior of complex concentrated alloys: a review. Metals, 8(8), 603, doi.org/10.3390/met8080603
Skorb, E. V., Möhwald, H., & Andreeva, D. V. (2016). Effect of cavitation bubble collapse on the modification of solids: crystallization aspects. Langmuir, 32(43), 11072-11085.
Swain, B., Mohapatra, S. S., & Behera, A. (2021). Plasma spray coating: a weapon to fight with erosion and corrosion phenomena. In Thermal spray coatings, CRC Press, pp. 317-330.
Pedeferri, P., & Pedeferri, P. (2018). High temperature corrosion. Corrosion Science and Engineering, 589-610.
Javaherdashti, R., & Javaherdashti, R. (2017). Microbiologically influenced corrosion (MIC). Springer International Publishing, 29-79, doi.org/10.1007/978-1-84800-074-2.
Bender, R., Féron, D., Mills, D., Ritter, S., Bäßler, R., Bettge, D., De Graeve, I., Dugstad, A., Grassini, S., Hack, T., & Halama, M., (2022). Corrosion challenges towards a sustainable society. Materials and corrosion, 73(11),1730-1751.
Quadri, T. W., Akpan, E. D., Olasunkanmi, L. O., Fayemi, O. E., & Ebenso, E. E. (2022). Fundamentals of corrosion chemistry. In Environmentally sustainable corrosion inhibitors, 25-45, doi.org/10.1016/B978-0-323-85405-4.00019-7.
Avdeev, Y. G., & Kuznetsov, Y. I. (2021). Effect of iron (III) salts on steel corrosion in acid solutions. A review. International Journal of Corrosion and Scale Inhibition, 10(3), 1069-1109.
Klenam, D. E., Bodunrin, M. O., Akromah, S., Gikunoo, E., Andrews, A., & McBagonluri, F. (2021). Ferrous materials degradation: characterisation of rust by colour–an overview. Corrosion Reviews, 39(4), 297-311.
Li, L., Mahmoodian, M., Li, C. Q., & Robert, D. (2018). Effect of corrosion and hydrogen embrittlement on microstructure and mechanical properties of mild steel. Construction and Building Materials, 170, 78-90.
Aslam, R., Mobin, M., Zehra, S., & Aslam, J. (2022). A comprehensive review of corrosion inhibitors employed to mitigate stainless steel corrosion in different environments. Journal of Molecular Liquids, 364, 119992, doi.org/10.1016/j.molliq.2022.119992.
Iber, B. T., Kasan, N. A., Torsabo, D., & Omuwa, J. W. (2022). A review of various sources of chitin and chitosan in nature. Journal of Renewable Materials, 10(4), 42-49.
Novikov, V. Y., Derkach, S. R., Konovalova, I. N., Dolgopyatova, N. V., & Kuchina, Y. A. (2023). Mechanism of heterogeneous alkaline deacetylation of chitin: A review. Polymers, 15(7), 1729.
Hasan, S., Boddu, V. M., Viswanath, D. S., & Ghosh, T. K. (2022). Chitin and Chitosan. Science and Engineering; Springer Nature Switzerland: Cham, Switzerland, doi.org/10.1007/978-3-031-01229-7.
Novikov, V. Y., Konovalova, I. N., & Dolgopyatova, N. V. (2022). The mechanism of chitin and chitosan deacetylation during long-term alkaline treatment. Applied Biochemistry and Microbiology, 58(3), 309-314.
Binder, L., de Sousa Santos, F., & da Conceição, T. F. (2024). The influence of molecular weight on the anticorrosion properties of chitosan coatings. International Journal of Biological Macromolecules, 278, 134912.
Carrera, C., Bengoechea, C., Carrillo, F., & Calero, N. (2023). Effect of deacetylation degree and molecular weight on surface properties of chitosan obtained from biowastes. Food Hydrocolloids, 137, 108383.
Jessima, S. H. M., Berisha, A., & Srikandan, S. S. (2020). Preparation, characterization, and evaluation of corrosion inhibition efficiency of sodium lauryl sulfate modified chitosan for mild steel in the acid pickling process. Journal of Molecular Liquids, 320, 114382.
Wang, J. & Zhuang, S. (2022). Chitosan-based materials: Preparation, modification and application. Journal of Cleaner Production, 355, 131825.
Aguilar-Ruiz, A. A., Dévora-Isiordia, G. E., Sánchez-Duarte, R. G., Villegas-Peralta, Y., Orozco-Carmona, V. M., & Álvarez-Sánchez, J. (2023). Chitosan-based sustainable coatings for corrosion inhibition of aluminum in seawater. Coatings, 13(9), 1615, doi.org/10.3390/coatings13091615.
Das, A., Ghosh, S. & Pramanik, N. (2024). Chitosan biopolymer and its composites: Processing, properties and applications- A comprehensive review, Hybrid Advances, 6, doi.org/10.1016/j.hybadv.2024.100265.
El Ibrahimi, B., Guo, L., & Nardeli, J. V. (2021). The Application of Chitosan-Based Compounds against Metallic. In: Chitin and Chitosan: Physicochemical Properties and Industrial Applications, doi.org/10.5772/intechopen.96046.
Fetouh, H. A., Hefnawy, A., Attia, A. M., & Ali, E. (2020). Facile and low-cost green synthesis of eco-friendly chitosan-silver nanocomposite as novel and promising corrosion inhibitor for mild steel in chilled water circuits. Journal of Molecular Liquids, 319, 114355.
Kolawole, F. O., Kolawole, S. K., Olugbemi, O. M., & Hassan, S. B. (2019). Green corrosion inhibitory potentials of cassava plant (Manihot esculenta Crantz) extract nanoparticles (CPENPs) in coatings for oil and gas pipeline. In Corrosion inhibitors. doi.org/10.5772/intechopen.79221.
Nizzy, A. M., & Kannan, S. (2022). A review on the conversion of cassava wastes into value-added products towards a sustainable environment. Environmental science and pollution research, 29(46), 69223-69240.
Verma, C., Chauhan, D.S., Aslam, R., Banerjee, P., Aslam, J., Quadri, T.W., Zehra, S., Verma, D.K., Quraishi, M.A., Dubey, S., & AlFantazi, A. (2024). Principles and theories of green chemistry for corrosion science and engineering: design and application. Green Chemistry, 26(8), 4270-4357.
Wang, Z., Mhaske, P., Farahnaky, A., Kasapis, S., & Majzoobi, M. (2022). Cassava starch: Chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocolloids, 129, 107542.
Sanders, J. M., Misra, M., Mustard, T. J. L., Giesen, D. J., Zhang, T., Shelley, J. & Halls, M. D. (2021). Characterizing moisture uptake and plasticization effects of water on amorphous amylose starch models using molecular dynamics methods, Carbohydrate Polymers, 252, doi.org/10.1016/j.carbpol.2020.117161.
Ahmad, M., Gani, A., Hassan, I., Huang, Q. & Shabbir, H. (2020). Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Scientific Report, 10, 3533, doi.org/10.1038/s41598-020-60380-0.
Nsanzabera, F., Manishimwe, A., Mwiseneza, A., & Irakoze, E. (2023). Production of corn (zea mays) starch and cassava (manihot esculenta) starch and their application as yogurt stabilizer, Food and Nutrition Sciences, 14(7), 589-600. doi: 10.4236/fns.2023.147039.
AL Salihi, H. A., Mahdi, R. R., Al‐Amiery, A., Al‐Azzawi, W. K., & Kadhum, A. A. H. (2024). Exploring the efficacy of polysaccharides as green corrosion inhibitors: a comprehensive review. Starch‐Stärke, 76(7-8), 2300234.
Huang, L., Chen, W. Q., Wang, S. S., Zhao, Q., Li, H. J., & Wu, Y. C. (2022). Starch, cellulose and plant extracts as green inhibitors of metal corrosion: a review. Environmental Chemistry Letters, 20(5), 3235-3264.
Majeed, T., Dar, A.H., Pandey, V.K., Dash, K.K., Srivastava, S., Shams, R., Jeevarathinam, G., Singh, P., Echegaray, N. & Pandiselvam, R. (2023). Role of additives in starch-based edible films and coating: A review with current knowledge. Progress in Organic Coatings, 181, p.107597.
Gamage, A., Punniamoorthy, T., & Madhujith, T. (2021). Starch-based hybrid nanomaterials for environmental remediation. In: Starch-Evolution and Recent Advances. doi.org/10.5772/intechopen.101697.
Navaf, M., Sunooj, K. V., Aaliya, B., Akhila, P. P., Sudheesh, C., Mir, S. A., & George, J. (2023). Impact of metal and metal oxide nanoparticles on functional and antimicrobial activity of starch nanocomposite film; A review. Measurement: Food, 11, 100099.
Quadri, T. W., Olasunkanmi, L. O., Fayemi, O. E., & Ebenso, E. E. (2023). Grafted Starch Used as Sustainable Corrosion Inhibitors. In: Grafted Biopolymers as Corrosion Inhibitors: Safety, Sustainability, and Efficiency, 313-335. doi.org/10.1002/9781119881391.ch14.
Yihang, Z. (2022). Application of water-soluble polymer inhibitor in metal corrosion protection: Progress and challenges. Frontiers in Energy Research, 10, 997107.
Zahran, M., Khalifa, Z., Zahran, M. A. H., & Azzem, M. A. (2021). Recent advances in silver nanoparticle-based electrochemical sensors for determining organic pollutants in water: A review. Materials Advances, 2(22), 7350-7365.
Zhao, Y., Zhang, Y., Dong, H., Wu, W., Yang, X., & He, Q. (2023). Functional biopolymers for food packaging: formation mechanism
Karmakar, B., Sarkar, S., Chakraborty, R., Saha, S. P., Thirugnanam, A., Roy, P. K., & Roy, S. (2024). Starch-based biodegradable films amended with nano-starch and tannic acid-coated nano-starch exhibit enhanced mechanical and functional attributes with antimicrobial activity. Carbohydrate Polymers, 341, 122321.
Ezzat, A. O., Aigbodion, V. S., Al-Lohedan, H. A., & Ozoude, C. J. (2024). Unveiling the corrosion inhibition efficacy and stability of silver nanoparticles synthesized using Anacardium occidentale leaf extract for mild steel in a simulated seawater solution. RSC advances, 14(26), 18395-18405.
Bamal, D., Singh, A., Chaudhary, G., Kumar, M., Singh, M., Rani, N., Mundlia, P., & Sehrawat, A.R. (2021). Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: An updated review. Nanomaterials, 11(8), 2086.
Hasmadi, M., Harlina, L., Jau-Shya, L., Mansoor, A. H., Jahurul, M.H A. & Zainol, M.K. (2021). Extraction and characterisation of cassava starch cultivated in different locations in Sabah, Malaysia, Food Research, 5(3), 44-52, doi:10.26656/fr.2017.5(3).550
Adeyi, A. A., Fasina, F. D., & Giwa, A. (2018). Kinetics and Isotherm Studies of liquid phase adsorption of cationic dye onto chitosan synthesized from crab shells. Journal of Engineering Research in Africa, doi.org/10.4028/www.scientific.net/jera.37.112.
Yakout, S. M. & Mostafa, A. A. (2015). A novel green synthesis of silver nanoparticles using soluble starch and its antibacterial activity, International Journal of Clinical and Experimental Medicine, 8(3), 3538-3544, PMCID: PMC4443080, PMID: 2606424
Monshi, A., Foroughi, M. & Monshi, M. (2012). Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2(3), 154-160. doi: 10.4236/wjnse.2012.23020.
Xu, Y. X., Kim, K. M., Hanna, M. A. & Nag, D. (2005). Chitosan-starch composite film: Preparation and characterization, Industrial Crops and Products, 21(2), 185-192, doi:10.1016/j.indcrop.2004.03.002
Umoren, S. A., and Eduok, U. M. (2016). Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review. Carbohydrate polymers, 140, 314-341.
Nawaz, H., Waheed, R., Nawaz, M., & Shahwar, D. (2020). Physical and chemical modifications in starch structure and reactivity. In Chemical properties of starch. doi.org/10.5772/intechopen.88870.
Haroon, M., Wang, L., Yu, H., Abbasi, N.M., Saleem, M., Khan, R.U., Ullah, R.S., Chen, Q., & Wu, J. (2016). Chemical modification of starch and its application as an adsorbent material. RSC Advances, 6(82), 78264-78285.
Ali, M.H., Azad, M.A.K., Khan, K.A., Rahman, M.O., Chakma, U., & Kumer, A.(2023) Analysis of crystallographic structures and properties of silver nanoparticles synthesized using PKL extract and nanoscale characterization techniques. ACS Omega. 8(31), 28133-28142, doi:10.1021/acsomega.3c01261.
Todorova, M., Petrova, V., Ranguelov, B., Avdeev, G., Velkova, L., Atanasova-Vladimirova, S., Pisareva, E., Tankov, C., Tomova, A., Dolashki, A. & Dolashka, P. (2025) Green synthesis of antimicrobial silver nanoparticles (AgNPs) from the mucus of the garden snail cornu aspersum. Molecules. 30(10), 2150. doi: 10.3390/molecules30102150.
Gajdacsi, A., & Cegla, F. (2016). The effect of corrosion induced surface morphology changes on ultrasonically monitored corrosion rates. Smart Materials and Structures, 25(11), 115010.