Green Hydrogen Synthesis from Human Urine as Sustainable Bioenergy Resources

Main Article Content

Blossom Odili
Sylvia Igbafe
Adeyinka Sikiru Yusuff
Akeem Aderibigbe Adebomehin
Anselm Iuebego Igbafe

Abstract

With the earths cry for help as pollution rate increases, researchers are faced with a common task of tackling pollution resulting from dependence on fossil fuel as well as delivering sustainable energy. Renewable energy resources such as solar, wind, hydro to mention a few are currently finding applications within the world energy mix but some limitations which range from meteorology of locations to expected maximum energy output attainable. Hydrogen, the most abundant element in the world stand chance of abating this problem. However conventional method of its producing, poses severe treat to the atmospheric environment with the release of oxides of carbon hence, referred as blue hydrogen. Contrarily, green hydrogen from human urine stands a more sustainable and environmentally friendly energy resource. This study was aimed to empirically model the synthesis of green hydrogen from urea in human urine by an electrolytic process. The synthesized hydrogen was characterized on physiochemical properties of conductivity, turbidity, pH, specific gravity and colour, while the precursor urine characterized on gender, exposure duration and storage temperature. The synthesis process was modelled using Microsoft excel solver for the overall cell energy or polarization curve model, the Faraday’s efficiency model and gas purity model at electrolyte concentrations of 25 wt./wt., 30 wt./wt. and 35 wt./wt. of potassium oxide (buffer} to urea over a five-temperature interval range of 45 to 85 oC. Findings revealed that the gas produced was 99.88% hydrogen at the cathode. Also, hydrogen produced increased with increase in electrolyte concentration and moderate temperature with optimal conditions at 35 w/w electrolyte concentration and 65 oC. However, the minimum cell voltage was 2.06 V at 85 oC and 35 w/w electrolyte concentration. With an exception of the Faraday’s efficiency model at 30 wt./wt. electrolyte concentration across the system’s operating temperature range yielding an R2 value of 0.711, all the models yielded coefficient of determination values in the range of 0.96 and 0.99, indicating good fit for the alkaline urine electrolysis for green hydrogen synthesis from human urine.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
B. Odili, S. Igbafe, A. S. Yusuff, A. A. Adebomehin, and A. I. Igbafe, “Green Hydrogen Synthesis from Human Urine as Sustainable Bioenergy Resources”, AJERD, vol. 7, no. 2, pp. 415–424, Oct. 2024.
Section
Articles

References

IEA (2015). International Energy Agency, World Energy Outlook, IEA Paris, https://www.iea.org/reports/world-energy-outlook-2015.

Yong, Z.J., Bashir, M.J.K., Ng, C.A., Sethupathi, S. Lim, J.W. & Show, P.L. (2019). Sustainable waste-to-energy development in Malaysia: Appraisal of environmental, financial, and public issues related with energy recovery from municipal solid waste, Processes, 7(10): 676. doi: 10.3390/pr7100676.

Czúcz, B., Gathman, J.P. & McPherson, G.R. (2010). The impending peak and decline of petroleum production: An underestimated challenge for conservation of ecological integrity, Conservation Biology, 24(4): 948-956. doi: 10.1111/j.1523-1739.2010.01503.x.

Momirlan, M. & Veziroglu, T.N. (2005). The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet, International Journal of Hydrogen Energy, 30(7): 795-802. doi:10.1016/j.ijhydene.2004.10.011.

Serafin, J. (2023). Titanium dioxide and nanoshaped ceria for solar hydrogen production, departament d’enginyeria quimica, universitat politechnica de Catalunya, Barcelonatech.

doi: 10.5821/dissertation-2117-38679.

Militzer, B. & Ceperley, B.M. (2001). Path integral Monte Carlo simulation of the low-density hydrogen plasma, Physical Review E-Statistical, Nonlinear, and Soft matter physics, 63(6). doi: 10.1103/physrevE.63.066404.

Kumar, S.S. & Lim, H. (2022). An overview of water electrolysis technologies for green hydrogen production, Energy Reports, 8: 13793-13813. doi: 10.1016/j.egyr.2022.10.127.

Kannah, R.Y., Kavitha, S., Preethi, M., Karthikeyan, O.P., Kumar, G., Dai-Viet, N.V. & Banu, J. R. (2021). Techno-economic assessment of various hydrogen production methods-A review, Bioresource Technology, 319: 124175. doi: 10.1016/j.biortech.2020.124175.

Noussan, M., Raimondi, P.P., Scita, R. & Hafner, M. (2020). The role of green and blue hydrogen in the energy transition-A technological and geopolitical perspective, Sustainability, 13(1): 298. doi: 10.3390/su13010298.

Boggs, B.K., King, R.L. & Botte, G.G. (2009). Urea electrolysis: direct hydrogen production from urine, Chemical Communications, 32:4859. doi: 10.1039/b905974a.

Steele, B.C.H. & Heinzel, A. (2001). Materials for fuel-cell technologies, Nature, 414(6861): 345-352. doi: 10.1038/35104620.

Song, M.-F., Li, Y.S., Ootsuyama, Y., Kasai, H., Kawai, K., Ohta, M., Eguchi, Y., Yamato, H., Matsumoto, Y., Yoshida, R. & Ogawa, Y. (2009). Urea, the most abundant component in urine, cross-reacts with a commercial 8-OH-dG ELISA kit and contributes to overestimation of urinary 8-OH-dG, Free Radical Biology & Medicine, 47(1): 41-46. doi: 10.1016/j.freeradbiomed.2009.02.017.

Rose, C., Parker, A., Jefferson, B. & Cartmell, E. (2015). The Characterization of feces and Urine: A review of the literature to inform advanced Treatment technology, Critical Reviews in Environmental Science and Technology, 45(17): 1827-1879. doi: 10.1080/10643389.2014.1000761.

Ulleberg, O. (2003). Modeling of advanced alkaline electrolyzers: a system simulation approach,” International Journal of Hydrogen Energy, 28(1): 21-33. doi: 10.1016/s0360-3199(02)00033-2.

Sánchez, M., Amores, E., Rodríguez, L. & Clemente-Jul, C. (2018): Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer, International Journal of Hydrogen Energy, 43(45): 20332-20345. doi: 10.1016/j.ijhydene.2018.09.029.

Bessarabov, D., Wang, H., Li, H. & Zhao, N. (2015). PEM electrolysis for hydrogen production: Principles and Applications, 1st edition, crc press.DOI.ORG/10.1201/b19096.

Igbafe, S., Azuokwu, A.A. & Igbafe, A.I. (2021). Production and characterization of an eco-friendly oil based mud from synthetic bio-lubricant derived from chrysophyllum albidum seed oil, Engineering and Techology Research Journal, 6(2): 40-47. doi: 10.47545/etrj.2021.6.2.083.

McCrary, J. (2008). Manipulation of the running variable in the regression discontinuity design: A density test, Journal of Econometrics, 142(2): 698-714. doi: 10.1016/j.jeconom.2007.05.005.

Kwong, T., Robinson, C., Spencer, D., Wiseman, O.J. & Frankl, F.E.K. (2013). Accuracy of urine pH testing in a regional metabolic renal clinic: Is the dipstick accurate enough?, Urolithiasis, 41(2): 129-132. doi: 10.1007/s00240-013-0546-y.

Marcotte, D. & Pasquier, P. (2008). On the estimation of thermal resistance in borehole thermal conductivity test, Renewable Energy, 33(11): 2407-2415. doi: 10.1016/j.renene.2008.01.021.

Angaali, N., Vemu, L., Padmasri, C., Mamidi, N. & Teja, V.D. (2018). Direct identification and susceptibility testing of Gram-negative bacilli from turbid urine samples using VITEK2, Journal of Laboratory Physicians, 10(3): 299-303. doi: 10.4103/jlp.jlp_118_17.

Yuvaraj, A.L. & Santhanaraj, D. (2013). A systematic study on electrolytic production of hydrogen gas by using graphite as electrode, Materials Research, 17(1): 83-87. doi: 10.1590/s1516-14392013005000153.

Jiang, R & Chu, D. (2001). Stack design and performance of polymer electrolyte membrane fuel cells, Journal of Power Sources, 93(1-2): 25-31. doi: 10.1016/s0378-7753(00)00539-5.

Gilliam, R., Graydon, J., Kirk, D. & Thorpe, S. (2007). A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures, International Journal of Hydrogen Energy, 32(3): 359-364. doi: 10.1016/j.ijhydene.2006.10.062.

Barnoush, A., Dake, J., Kheradmand, N. & Vehoff, H. (2010). Examination of hydrogen embrittlement in FeAl by means of in situ electrochemical micropillar compression and nanoindentation techniques, Intermetallics, 18(7): 1385-1389. doi: 10.1016/j.intermet.2010.01.001

Fridolin, I. & Lindberg, L. -g. (2003). On-line monitoring of solutes in dialysate using wavelength-dependent absorption of ultraviolet radiation, Medical & Biological Engineering & Computing, 41(3): 263-270. doi: 10.1007/bf02348430.

Amores, E., Rodríguez, J. & Carreras, C. (2014). Influence of operation parameters in the modeling of alkaline water electrolyzers for hydrogen production, International Journal of Hydrogen Energy, 39(25): 13063-13078. doi: 10.1016/j.ijhydene.2014.07.001.

Sellami, M. H. & Loudiyi, L. (2017). Electrolytes behavior during hydrogen production by solar energy, Renewable & Sustainable Energy Reviews, 70: 1331-1335. doi: 10.1016/j.rser.2016.12.034.

Haug, P., Koj, M. & Turek, T. (2017). Influence of process conditions on gas purity in alkaline water electrolysis, International Journal of Hydrogen Energy, 42(15): 9406-9418. doi: 10.1016/j.ijhydene.2016.12.111.

Kavanagh, J.P., Jones, L. & Rao, P.N. (2000). Calcium oxalate crystallization kinetics studied by oxalate-induced turbidity in fresh human urine and artificial urine, Clinical Science, 98(2): 151-158. doi: 10.1042/cs0980151.

Triger, A. Pic, J. -S. & Cabassud, C. (2012). Determination of struvite crystallization mechanisms in urine using turbidity measurement, Water Research, 46(18): 6084-6094. doi: 10.1016/j.watres.2012.08.030.

Diéguez, P.M., Ursúa, A., Sanchis, P., Sopena, C., Guelbenzu, E. & Gandía, L.M. (2008). Thermal performance of a commercial alkaline water electrolyzer: Experimental study and mathematical modeling, International Journal of Hydrogen Energy, 33(24): 7338-7354. doi: 10.1016/j.ijhydene.2008.09.051.

Schalenbach, M., Lueke, W. & Stolten, D. (2016). Hydrogen diffusivity and electrolyte permeability of the Zirfon PERL separator for alkaline water electrolysis, Journal of the Electrochemical Society, 163(14): F1480-F1488. doi: 10.1149/2.1251613jes.