Development of a Model for the Prediction of Lumpy Skin Diseases using Machine Learning Techniques

Main Article Content

Olatayo Moses Olaniyan
Olusogo Julius Adetunji
Adedire Marquis Fasanya

Abstract

Lumpy skin diseases virus (LSDV) is a dangerous and contagious diseases that are mostly common in Sub-Saharan African, South Eastern Europe, South Asia and as well as Middle East, China.  LSDV is transmitted through blood sucking insects which are double stranded DNA virus and belong to the family of Capri poxvirus genus family. The recent study proved and clarified that lumpy skin diseases viruses (LSDV) affected mostly cattle and buffalo in Africa, Asia and Europe with population of 29 966, 8 837 and 2 471 outbreaks respectively, between the years 2005 – 2021. Different machine learning approaches have been adopted for the prediction of lumpy skin diseases. An enhanced model was developed to improve the predictive performance of existing model and also, compared the performance of stacked ensemble of single classifiers with respect to optimized artificial neural network.  The implementation was done with python 3.7 on Core i5, 16G RAM Intel hardware.  The single classifiers are decision tree (DT), k-nearest neighbor, random forest (RF) and support vector machine (SVM). A feature wiz feature selection technique was adopted on lumpy skin diseases dataset coupled with the parameters tuning of the model before classification. Both stacked ensemble and optimized artificial neural network model outperformed the existing model. Stacked ensemble model gives accuracy, precision, f1-score and recall of 97.69%, 98.44%, 98.93% and 98.68% respectively. The results also showed that optimized artificial neural networks of 200 epochs outperformed stacked ensemble classifiers with accuracy of 98.89% and 98.66% of training and validation respectively. The developed model in a real world would assist in reducing the occurrence of lumpy skin diseases.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
O. M. Olaniyan, O. J. Adetunji, and A. M. Fasanya, “Development of a Model for the Prediction of Lumpy Skin Diseases using Machine Learning Techniques”, AJERD, vol. 6, no. 2, pp. 100–112, Oct. 2023.
Section
Articles

References

Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci., 3(2), 1–21, 2021, doi: 10.1007/s42979-021-00592-x. DOI: https://doi.org/10.1007/s42979-021-00592-x

Mujumdar, A. & Vaidehi, V. Diabetes Prediction using Machine Learning Algorithms. Procedia Comput. Sci., 5(16), 292–299, 2019, doi: 10.1016/j.procs.2020.01.047. DOI: https://doi.org/10.1016/j.procs.2020.01.047

Adetunji, O. J., Adeyanju, I. A. & Esan, A. O. (2023). Flood Areas Prediction in Nigeria using Artificial Neural Network. 2023 Int. Conf. Sci. Eng. Bus. Sustain. Dev. Goals, 1–6, doi: 10.1109/SEB-SDG57117.2023.10124629. DOI: https://doi.org/10.1109/SEB-SDG57117.2023.10124629

Sobowale, A., Olaniyan, O. M., Adetan, O., Olabiyisi, S. & Omidiora, E. (2020). Development of Fuzzy Rules for Cdss Based Neonatal Monitoring System. FUW Trends Sci. Technol. J., 3(5), 895–900.

Arora, A. (2020). Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for fl ood susceptibility prediction mapping in the Middle Ganga Plain , India. Sci. Total Environ., 7(50), 141-565, doi: 10.1016/j.scitotenv.2020.141565. DOI: https://doi.org/10.1016/j.scitotenv.2020.141565

Shen, Z., Wu, Q., Wang, Z., Chen, G. & Lin, G. (2021). Diabetic Retinopathy Prediction by Ensemble Learning Based on Biochemical and Physical Data. Sensors, 1–19. DOI: https://doi.org/10.3390/s21113663

Alazzam, M. B., Alassery, F. & Almulihi, A. (2021). Identification of Diabetic Retinopathy through Machine Learning. Mob. Inf. Syst., doi: 10.1155/2021/1155116. DOI: https://doi.org/10.1155/2021/1155116

Batta, M. (2018). Machine Learning Algorithms - A Review. Int. J. Sci. Res., 8(18), 381–386, doi: 10.21275/ART20203995. DOI: https://doi.org/10.21275/ART20203995

Madhavan, M. V., Pande, S., Umekar, P., Mahore, T. & Kalyankar, D. (2021). Comparative analysis of detection of email spam with the aid of machine learning approaches. IOP Conf. Ser. Mater. Sci. Eng., doi: 10.1088/1757-899X/1022/1/012113. DOI: https://doi.org/10.1088/1757-899X/1022/1/012113

Sethi, C. C. (2020). E-Mail Spam Detection using Machine Learning and Deep Learning. Int. J. Res. Appl. Sci. Eng. Technol., 6(8), 981–985, doi: 10.22214/ijraset.2020.6159. DOI: https://doi.org/10.22214/ijraset.2020.6159

Yile, A. O., Hongqi, L., Liping, Z., Sikandar, A. & Zhongguo, Y. (2019). The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling, J. Pet. Sci. Eng., 4(17), 776–789, doi: 10.1016/j.petrol.2018.11.067. DOI: https://doi.org/10.1016/j.petrol.2018.11.067

Ali, A., Ahmed, M., Naeem, S., Anam, S. & Ahmed, M. M. (2023). An Unsupervised Machine Learning Algorithms: Comprehensive Review, Int. J. Comput. Digit. Syst., 2(20), 210–242, doi: 10.12785/ijcds/130172. DOI: https://doi.org/10.12785/ijcds/130172

Bakumenko, A. & Elragal, A. (2022). Detecting Anomalies in Financial Data Using Machine Learning Algorithms. Systems, 5(10), 32-48, doi: 10.3390/systems10050130. DOI: https://doi.org/10.3390/systems10050130

Reddy, P., Viswanath, P. & Reddy, E. B. (2018). Semi-supervised learning: a brief review. Int. J. Eng. Technol., 18(7), 1- 18, doi: 10.14419/ijet.v7i1.8.9977. DOI: https://doi.org/10.14419/ijet.v7i1.8.9977

Singh, V., Chen, S. S., Singhania, B. Nanavati, A. kumarkar, & Gupta, A. (2022). How are reinforcement learning and deep learning algorithms used for big data based decision making in financial industries–A review and research agenda. Int. J. Inf. Manag. Data Insights, 2(2), 100 - 109, doi: 10.1016/j.jjimei.2022.100094. DOI: https://doi.org/10.1016/j.jjimei.2022.100094

Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y. & Tang, H. (2018). Predicting Diabetes Mellitus With Machine Learning Techniques. Front. Genet., 9(1), 1–10, doi: 10.3389/fgene.2018.00515. DOI: https://doi.org/10.3389/fgene.2018.00515

Julius, A. O., Ayokunle, A. O. & Ibrahim, F. O. (2021). Early Diabetic Risk Prediction using Machine Learning Classification Techniques,. Int. J. Innov. Sci. Res. Technol., 9(6), 502–507.

Saeed, S., Shaikh, A., M. Memon, M. A.& Naqvi, S. M. Impact of Data Mining Techniques to Analyze Health Care Data. J. Med. Imaging Heal. Informatics, 4(8), 682–690, doi: 10.1166/jmihi.2018.2385. DOI: https://doi.org/10.1166/jmihi.2018.2385

Afshari, S. & Ehsanallah. (2022). Assessing machine learning techniques in forecasting lumpy skin disease occurrence based on meteorological and geospatial features. Trop. Anim. Health Prod., 1(54), 12- 37, doi: 10.1007/s11250-022-03073-2. DOI: https://doi.org/10.1007/s11250-022-03073-2

Anwar, A., Na-Lampang, K., Preyavichyapugdee, N. & Punyapornwithaya, V. (2022). Lumpy Skin Disease Outbreaks in Africa, Europe, and Asia (2005–2022): Multiple Change Point Analysis and Time Series Forecast. Viruses, 10(14), 12-32, doi: 10.3390/v14102203. DOI: https://doi.org/10.3390/v14102203

Molla, W., de Jong, M .C., Gari, G. Frankena, K. (2017). Economic impact of lumpy skin disease and cost effectiveness of vaccination for the control of outbreaks in Ethiopia. Prev. Vet. Med., 7(14), 100–107, doi: 10.1016/j.prevetmed.2017.09.003. DOI: https://doi.org/10.1016/j.prevetmed.2017.09.003

Sprygin, A., Pestova, Y., Wallace, D. B., Tuppurainen, E. & Kononov, A. V. (2019). Transmission of lumpy skin disease virus: a short review. Virus Res., doi: 10.1016/j.virusres.2019.05.015. DOI: https://doi.org/10.1016/j.virusres.2019.05.015

Tuppurainen, E. (2021). Review: Vaccines and vaccination against lumpy skin disease. Vaccines 10(9), 1–22, doi: 10.3390/vaccines9101136. DOI: https://doi.org/10.3390/vaccines9101136

Patel, J. R. & Heldens, J. G. (2022). Immunoprophylaxis against important virus diseases of horses, farm animals and birds. Vaccine, 12(27), 1797–1810, doi: 10.1016/j.vaccine.2008.12.063. DOI: https://doi.org/10.1016/j.vaccine.2008.12.063

Ujjwal, N.,Singh, A., Jain, A. K. & Tiwari, R. G. (2022). Exploiting Machine Learning for Lumpy Skin Disease Occurrence Detection. 2022 10th Int. Conf. Reliab. Infocom Technol. Optim. (Trends Futur. Dir. (ICRITO), Noida, India, 1–6, doi: doi: 10.1109/ICRITO56286.2022.9964656. DOI: https://doi.org/10.1109/ICRITO56286.2022.9964656

Dofadar, D. F., Abdullah, H.,. Khan, R. H., Rahman, R. & Ahmed, M. S. (2022). A Comparative Analysis of Lumpy Skin Disease Prediction Through Machine Learning Approaches. 2022 IEEE Int. Conf. Artif. Intell. Eng. Technol., doi: 10.1109/IICAIET55139.2022.9936742. DOI: https://doi.org/10.1109/IICAIET55139.2022.9936742

Pal, O. K. (2021). Skin Disease Classification: A Comparative Analysis of K-Nearest Neighbors (KNN) and Random Forest Algorithm. Int. Conf. Electron. Commun. Inf. Technol. (ICECIT), Khulna, Bangladesh, 1-5, doi 10.1109/ICECIT54077.2021.9641120 DOI: https://doi.org/10.1109/ICECIT54077.2021.9641120

Suparyati, E. U. & Muhammad, A. H. (2022). Lumpy Skin Disease Prediction Based on Meteorological and Geospatial Features using Random Forest Algorithm with Hyperparameter Tuning.. 5th Int. Conf. Inf. Commun. Technol., p. Yogyakarta, Indonesia, 99–104, doi: doi: 10.1109/ICOIACT55506.2022.9971807. DOI: https://doi.org/10.1109/ICOIACT55506.2022.9971807

Chakraborty, S. (2017). Image based skin disease detection using hybrid neural network coupled bag-of-features. 2017 IEEE 8th Annu. Ubiquitous Comput. Electron. Mob. Commun. Conf., doi: New York, NY, USA, 242-246, doi: 10.1109/UEMCON.2017.8249038. DOI: https://doi.org/10.1109/UEMCON.2017.8249038

Rai, G., Naveen, A., Hussain, A., Kumar, A., Ansari, A. & Khanduja, N (2021). A Deep Learning Approach to Detect Lumpy Skin Disease in Cows. Comput. Networks, Big Data IoT, .369-377, doi: 10.1007/978-981-16-0965-7_30. DOI: https://doi.org/10.1007/978-981-16-0965-7_30

Mohammed, S. S. & Al-Tuwaijari, J. M. (2021). Skin Disease Classification System Based on Machine Learning Technique: A Survey. IOP Conf. Ser. Mater. Sci. Eng., doi: 10.1088/1757-899x/1076/1/012045. DOI: https://doi.org/10.1088/1757-899X/1076/1/012045

Lake, B., Getahun, F. & Teshome, F. (2022). Application of Artificial Intelligence Algorithm in Image Processing for Cattle Disease Diagnosis. J. Intell. Learn. Syst. Appl., 71–88, doi: 10.4236/jilsa.2022.144006. DOI: https://doi.org/10.4236/jilsa.2022.144006

Mohammed, R. R. & Islam, M. K. (2022). Skin Disease Screening System Based on Smartphone Captured Images Using Deep Learning. First Int. Conf. Intell. Comput. Eng., 267-272. 10.1109/ICCCAS55266.2022.9824580. DOI: https://doi.org/10.1109/ICCCAS55266.2022.9824580

Ehsanallah, A.S. (2021). Lumpy Skin disease dataset. Mendeley Data, V1, doi 10.17632/7pyhbzb2n9.1, 2021.

Saha, P., Patikar, S. & Neogy, S. (2020). A correlation - Sequential forward selection based feature selection method for healthcare data analysis. 2020 IEEE Int. Conf. Comput. Power Commun. Technol. GUCON, 69–72, doi: 10.1109/GUCON48875.2020.9231205. DOI: https://doi.org/10.1109/GUCON48875.2020.9231205

Tam, V. (2020). A comparative study of centroid-based, neighborhood-based and statistical approaches for effective document categorization. Object Recognit. Support. by user Interact. Serv. Robot., 2(4): 235–238, doi: 10.1109/ICPR.2002.1047440. DOI: https://doi.org/10.1109/ICPR.2002.1047440

Witten, I. H., Frank, E. & Hall, M. A. (2011). Data Mining: Practical machine learning tools and techniques, 3rd ed. San Francisco, CA,USA: Morgan Kaufmann Publishers Inc. DOI: https://doi.org/10.1016/B978-0-12-374856-0.00001-8

Colas, F. & Brazdil, P. (2006). Comparison of SVM and some older classification algorithms in text classification tasks. IFIP Int. Fed. Inf. Process., 2(17), 169–178, doi: 10.1007/978-0-387-34747-9_18. DOI: https://doi.org/10.1007/978-0-387-34747-9_18

Korde, V. & Mahender, C. N. (2012) . Text Classification and Classifiers: A Survey. Int. J. Artif. Intell. Appl., 2(3): 85–99, doi: 10.5121/ijaia.2012.3208. DOI: https://doi.org/10.5121/ijaia.2012.3208

Seema, M. & Mamta, R. (2012). Decision Tree: Data Mining Techniques. Int. J. Latest Trends Eng. Technol., 3(1), 150–155

Singh, N., Kumar, R. (2015). Diabetic retinopathy: an update. Indian J. Ophthalmol. 56(3), 179. DOI: https://doi.org/10.4103/0301-4738.40355

Yuan, X., Yuan, F., Yang, J., Peng, G. & Buckles, B. P. (2003). Gene Expression Classification : Decision Trees vs . SVMs. 92–96

Vapnik, V. (2000). The Nature of Statistical Learning Theory. New York: Springer-Verlag DOI: https://doi.org/10.1007/978-1-4757-3264-1

Baharudin, B., Lee, L. H. & Khan, K. (2010). A Review of Machine Learning Algorithms for Text-Documents Classification. J. Adv. Inf. Technol., 1(1), 4–20, doi: 10.4304/jait.1.1.4-20. DOI: https://doi.org/10.4304/jait.1.1.4-20

Tyralis, H. & Papacharalampous, G. (2019). A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water DOI: https://doi.org/10.3390/w11050910

Cutler, A., Cutler, D. R. & Stevens, J. R. (2012). Ensemble Machine Learning. Ensemble Mach. Learn., doi: 10.1007/978-1-4419-9326-7. DOI: https://doi.org/10.1007/978-1-4419-9326-7

Han, S., Kim, H. & Seop, Y. (2020). Double random forest. Mach. Learn., no. July, pp. 1569–1586 DOI: https://doi.org/10.1007/s10994-020-05889-1

Kumar, V. (2021). Evaluation of computationally intelligent techniques for breast cancer diagnosis,” Neural Comput. Appl., 33( 8), 3195–3208, doi: 10.1007/s00521-020-05204-y. DOI: https://doi.org/10.1007/s00521-020-05204-y

Mohseni-Dargah, K. M., Falahati, Z., Dabirmanesh, B. & Nasrollahi, P. (2022). Machine learning in surface plasmon resonance for environmental monitoring,” Artif. Intell. Data Sci. Environ. Sens., doi: 10.1016/B978-0-323-90508-4.00012-5. DOI: https://doi.org/10.1016/B978-0-323-90508-4.00012-5

Bourne, A. (2021). Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Heal., 2(9), 144–160, doi: 10.1016/S2214-109X(20)30489-7. DOI: https://doi.org/10.1016/S2214-109X(20)30489-7

Sairamya, N. J. & Subathra, M. S. (2019). Hybrid Approach for Classification of Electroencephalographic Signals Using Time-Frequency Images with wavelenghts and Texture Features. Intell. Data Anal. Biomed. Appl. DOI: https://doi.org/10.1016/B978-0-12-815553-0.00013-6

Mbunge, E. & Batani, J. (2023). Application of deep learning and machine learning models to improve healthcare in sub-Saharan Africa: Emerging opportunities, trends and implications. Telematics and Informatics Reports 11 (2023) 100097 DOI: https://doi.org/10.1016/j.teler.2023.100097

Punyapornwithaya V. (2023). Forecasting of daily new lumpy skin disease cases in Thailand at different stages of the epidemic using fuzzy logic time series, NNAR, and ARIMA methods. Preventive Veterinary Medicine, https://doi.org/10.1016/j.prevetmed.2023.105964. DOI: https://doi.org/10.1016/j.prevetmed.2023.105964

Kshirsagar, P. R., Manoharan, H., Shitharth, S., Alshareef, A. M., Albishry, N. & Balachandran, P. K. (2022). Deep Learning Approaches for Prognosis of Automated Skin Disease. Life 2022, 12, 426, https://doi.org/10.3390/ life12030426. DOI: https://doi.org/10.3390/life12030426

Olaniyan, O. M, Olusesi, A. T., Omodunbi ,B. A., Wahab, W. B., Adetunji, O. J. & Olukoya, B. M. (2023). A Data Security Model for Mobile Ad Hoc Network Using Linear Function Mayfly Advanced Encryption Standard. Int J Emerg Technol Adv Eng.;13(3), 101–123. DOI: https://doi.org/10.46338/ijetae0323_10

Olusesi, A. T., Olaniyan, O. M., Omodunbi, B. A., Wahab, W. B., Adetunji, O. J. & Olukoya, B. M. (2023). Energy Management Model for Mobile Ad hoc Network using Adaptive Information Weight Bat Algorithm. e-Prime - Adv Electr Eng Electron Energy, https://doi.org/10.1016/j.prime.2023.100255. DOI: https://doi.org/10.1016/j.prime.2023.100255

Ibitoye, O. T., Osaloni, O. O., Amudipe, S. O. & Adetunji, O. J. (2023). An Adaptive Neural Network Model for Clinical Face Mask Detection. WSEAS Transactions on Biology and Biomedicine, 1(20), 240-246 DOI: https://doi.org/10.37394/23208.2023.20.25

Most read articles by the same author(s)