Hydrogen Separation and Purification Techniques in Pyrolysis-Based Processes
Main Article Content
Abstract
The production of hydrogen via pyrolysis process has gained a significant attention due to its capacity to offer reliable and sustainable as well as efficient techniques for hydrogen energy generation. Despite these benefits, there are challenges with its purification and separation which represent a major procedure during its production. This study focused on the current methods deployed in hydrogen production with emphasis on its separation and purification during pyrolysis-based process. These methods include pressure swing adsorption, membrane filtration and cryogenic separation techniques. Each of the methods, principles of operation as well as it relates to the pyrolysis gas composition were discussed. Their advantages, limitations and the desired purity of hydrogen produced were inclusive during the discussion. Findings showed that despite the significance of these technologies, research is still needed to achieve a more cost effective, scalable and energy efficient methods for the production of hydrogen especially in the areas of purification and separation.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Ingale, G. U., Park, D. H., Yang, C. W., Kwon, H. M., Wi, T. G., Park, Y. J., ... & Lee, U. D. (2025). Low-carbon hydrogen production by molten metal–catalyzed methane pyrolysis: Catalysts, reactor design, and process development. Renewable and Sustainable Energy Reviews, 208, 114999.
Abdin, Z., Zafaranloo, A., Rafiee, A., Mérida, W., Lipiński, W., & Khalilpour, K. R. (2020). Hydrogen as an energy vector. Renewable and sustainable energy reviews, 120, 109620.
Keipi, T., Tolvanen, H., & Konttinen, J. (2018). Economic analysis of hydrogen production by methane thermal decomposition: Comparison to competing technologies. Energy Conversion and Management, 159, 264-273.
Alves, L., Pereira, V., Lagarteira, T., & Mendes, A. (2021). Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements. Renewable and Sustainable Energy Reviews, 137, 110465.
Parkinson, B., Patzschke, C. F., Nikolis, D., Raman, S., & Hellgardt, K. (2021). Molten salt bubble columns for low-carbon hydrogen from CH4 pyrolysis: mass transfer and carbon formation mechanisms. Chemical Engineering Journal, 417, 127407.
Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and sustainable energy reviews, 67, 597-611.
Muradov, N. (2017). Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives. International Journal of Hydrogen Energy, 42(20), 14058-14088.
Parkinson, B., Tabatabaei, M., Upham, D. C., Ballinger, B., Greig, C., Smart, S., & McFarland, E. (2018). Hydrogen production using methane: Techno-economics of decarbonizing fuels and chemicals. International Journal of Hydrogen Energy, 43(5), 2540-2555.
Kudinov, I. V., Pimenov, A. A., Kryukov, Y. A., & Mikheeva, G. V. (2021). A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis in a layer of molten tin. International journal of hydrogen energy, 46(17), 10183-10190.
Noh, Y. G., Lee, Y. J., Kim, J., Kim, Y. K., Ha, J., Kalanur, S. S., & Seo, H. (2022). Enhanced efficiency in CO2-free hydrogen production from methane in a molten liquid alloy bubble column reactor with zirconia beads. Chemical Engineering Journal, 428, 131095.
Çelik, A., Othman, I. B., Neudeck, Y., Deutschmann, O., & Lott, P. (2025). A techno-economic assessment of pyrolysis processes for carbon capture, hydrogen and syngas production from variable methane sources: Comparison with steam reforming, water electrolysis, and coal gasification. Energy Conversion and Management, 326, 119414.
Sánchez-Bastardo, N., Schlögl, R., & Ruland, H. (2021). Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy. Industrial & Engineering Chemistry Research, 60(32), 11855-11881.
Machhammer, O., Bode, A., & Hormuth, W. (2016). Financial and ecological evaluation of hydrogen production processes on large scale. Chemical Engineering & Technology, 39(6), 1185-1193.
Muradov, N. Z., & Veziroǧlu, T. N. (2005). From hydrocarbon to hydrogen–carbon to hydrogen economy. International journal of hydrogen energy, 30(3), 225-237.
Ehrhardt, K., Scheiff, F., Flick, D., Lott, P., Mokashi, M., Heitlinger, H., ... & Deutschmann, O. (2021). Pyrolysis of methane: interplay between industrial design considerations and detailed chemistry evaluation. In 13th European Congress of Chemical Engineering. ECCE-ECAB.
Raza, A., Gholami, R., Rezaee, R., Rasouli, V., & Rabiei, M. (2019). Significant aspects of carbon capture and storage–A review. Petroleum, 5(4), 335-340.
Lott, P., Mokashi, M. B., Müller, H., Heitlinger, D. J., Lichtenberg, S., Shirsath, A. B., ... & Deutschmann, O. (2023). Hydrogen Production and Carbon Capture by Gas‐Phase Methane Pyrolysis: A Feasibility Study. ChemSusChem, 16(6), e202201720.
Mokashi, M., Shirsath, A. B., Lott, P., Müller, H., Tischer, S., Maier, L., & Deutschmann, O. (2024). Understanding of gas-phase methane pyrolysis towards hydrogen and solid carbon with detailed kinetic simulations and experiments. Chemical Engineering Journal, 479, 147556.
Çelik, A., Ben Othman, I., Müller, H., Deutschmann, O., & Lott, P. (2024). CO2-free production of hydrogen via pyrolysis of natural gas: influence of non-methane hydrocarbons on product composition, methane conversion, hydrogen yield, and carbon capture. Discover Chemical Engineering, 4(1), 1-16.
Sharif Zein, S. H., Mohamed, A. R., & Talpa Sai, P. S. (2004). Kinetic studies on catalytic decomposition of methane to hydrogen and carbon over Ni/TiO2 catalyst. Industrial & engineering chemistry research, 43(16), 4864-4870.
Ashok, J., Reddy, P. S., Raju, G., Subrahmanyam, M., & Venugopal, A. (2009). Catalytic decomposition of methane to hydrogen and carbon nanofibers over Ni− Cu− SiO2 catalysts. Energy & fuels, 23(1), 5-13.
Muradov, N., Smith, F., Huang, C., & T-Raissi, A. (2006). Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO2 emissions. Catalysis today, 116(3), 281-288.
Shilapuram, V., Ozalp, N., Oschatz, M., Borchardt, L., & Kaskel, S. (2014). Hydrogen production from catalytic decomposition of methane over ordered mesoporous carbons (CMK-3) and carbide-derived carbon (DUT-19). Carbon, 67, 377-389.
Fulcheri, L., Probst, N., Flamant, G., Fabry, F., Grivei, E., & Bourrat, X. (2002). Plasma processing: a step towards the production of new grades of carbon black. Carbon, 40(2), 169-176.
Geißler, T., Plevan, M., Abánades, A., Heinzel, A., Mehravaran, K., Rathnam, R. K., ... & Wetzel, T. (2015). Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed. International Journal of Hydrogen Energy, 40(41), 14134-14146.
Yang, W. W., Tang, X. Y., Ma, X., Cao, X. E., & He, Y. L. (2025). Synergistic intensification of palladium-based membrane reactors for hydrogen production: A review. Energy Conversion and Management, 325, 119424.
Olabi, A. G., & Abdelkareem, M. A. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, 112111.
Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990.
Wang, F., Harindintwali, J. D., Yuan, Z., Wang, M., Wang, F., Li, S., ... & Chen, J. M. (2021). Technologies and perspectives for achieving carbon neutrality. The innovation, 2(4).
Zainal, B. S., Ker, P. J., Mohamed, H., Ong, H. C., Fattah, I. M. R., Rahman, S. A., ... & Mahlia, T. I. (2024). Recent advancement and assessment of green hydrogen production technologies. Renewable and Sustainable Energy Reviews, 189, 113941.
Yang, W. W., Ma, X., Tang, X. Y., Dou, P. Y., Yang, Y. J., & He, Y. L. (2023). Review on developments of catalytic system for methanol steam reforming from the perspective of energy-mass conversion. Fuel, 345, 128234.
Ahmad, Y. H., Ibrahim, M. F., Banu, J. R., & Al-Qaradawi, S. Y. (2024). Recent advances on the use of promoters in biochemical hydrogen production: A comprehensive review. Energy Conversion and Management, 317, 118814.
Dang, V. H., Nguyen, T. A., Le, M. V., Nguyen, D. Q., Wang, Y. H., & Wu, J. C. S. (2024). Photocatalytic hydrogen production from seawater splitting: Current status, challenges, strategies and prospective applications. Chemical Engineering Journal, 484, 149213.
Hermesmann, M., & Müller, T. E. (2022). Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Progress in Energy and Combustion Science, 90, 100996.
Liu, W., Wan, Y., Xiong, Y., & Gao, P. (2022). Green hydrogen standard in China: Standard and evaluation of low-carbon hydrogen, clean hydrogen, and renewable hydrogen. International Journal of Hydrogen Energy, 47(58), 24584-24591.
Farhana, K., Mahamude, A. S. F., & Kadirgama, K. (2024). Comparing hydrogen fuel cost of production from various sources-a competitive analysis. Energy Conversion and Management, 302, 118088.
Tang, X. Y., Zhang, K. R., Yang, W. W., & Dou, P. Y. (2023). Integrated design of solar concentrator and thermochemical reactor guided by optimal solar radiation distribution. Energy, 263, 125828.
Lopez, G., Aghahosseini, A., Child, M., Khalili, S., Fasihi, M., Bogdanov, D., & Breyer, C. (2022). Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making. Renewable and Sustainable Energy Reviews, 164, 112452.
Tang, X. Y., Dou, P. Y., Dai, Z. Q., & Yang, W. W. (2022). Structural design and analysis of a solar thermochemical reactor partially filled with phase change material based on shape optimization. Solar Energy, 236, 613-625.
Tang, X. Y., Yang, W. W., Yang, Y., Jiao, Y. H., & Zhang, T. (2021). A design method for optimizing the secondary reflector of a parabolic trough solar concentrator to achieve uniform heat flux distribution. Energy, 229, 120749.
Cormos, C. C. (2025). Techno-economic and environmental assessment of green hydrogen production via biogas reforming with membrane-based CO2 capture. International Journal of Hydrogen Energy, 101, 702-711.
Bandyopadhyay, S. (2023). Power pinch analysis. In Handbook of Process Integration (PI) (pp. 1043-1060). Woodhead Publishing.
Zhao, X., Joseph, B., Kuhn, J., & Ozcan, S. (2020). Biogas reforming to syngas: a review. IScience, 23(5).
Liu, K., Song, C., & Subramani, V. (2010). Hydrogen and syngas production and purification technologies. John Wiley & Sons.
Cormos, C. C., Cormos, A. M., Petrescu, L., & Dragan, S. (2022). Techno-economic assessment of decarbonized biogas catalytic reforming for flexible hydrogen and power production. Applied Thermal Engineering, 207, 118218.
Fu, J., Ahmad, N. R., Leo, C. P., Aberilla, J. M., Cruz, I. D., Alamani, B. G., & Koh, S. P. (2024). Techno-economic and life cycle assessment of membrane separation in post-combustion carbon capture: A review. Gas Science and Engineering, 205401.
Van der Spek, M., Roussanaly, S., & Rubin, E. S. (2019). Best practices and recent advances in CCS cost engineering and economic analysis. International Journal of Greenhouse Gas Control, 83, 91-104.
Jenkins, S. (2019). Chemical engineering plant cost index annual average. Chem Eng.
Cormos, C. C., Petrescu, L., & Cormos, A. M. (2014). Assessment of hydrogen production systems based on natural gas conversion with carbon capture and storage. In Computer aided chemical engineering (Vol. 33, pp. 1081-1086). Elsevier.
Muhammed, N. S., Gbadamosi, A. O., Epelle, E. I., Abdulrasheed, A. A., Haq, B., Patil, S., ... & Kamal, M. S. (2023). Hydrogen production, transportation, utilization, and storage: Recent advances towards sustainable energy. Journal of energy storage, 73, 109207.
Abdelsalam, R. A., Mohamed, M., Farag, H. E., & El-Saadany, E. F. (2024). Green hydrogen production plants: A techno-economic review. Energy Conversion and Management, 319, 118907.
Emetere, M. E., Oniha, M. I., Akinyosoye, D. A., Elughi, G. N., & Afolalu, S. A. (2024). Progress and challenges of green hydrogen gas production: Leveraging on the successes of biogas. International Journal of Hydrogen Energy, 79, 1071-1085.
Voldsund, M., Jordal, K., & Anantharaman, R. (2016). Hydrogen production with CO2 capture. International Journal of hydrogen energy, 41(9), 4969-4992.
Cormos, A. M., Dragan, S., Petrescu, L., Sandu, V., & Cormos, C. C. (2020). Techno-economic and environmental evaluations of decarbonized fossil-intensive industrial processes by reactive absorption & adsorption CO2 capture systems. Energies, 13(5), 1268.
Abd, A. A., Shamsudin, I. K., Jasim, D. J., Othman, M. R., & Kim, J. (2024). Hydrogen purification to fuel cell quality using pressure swing adsorption for CO2 separation over activated carbon molecular sieve: Experimental and dynamic modelling evaluation under non-isothermal condition. Materials Today Sustainability, 27, 100918.
Zafanelli, L. F., Aly, E., Henrique, A., Rodrigues, A. E., & Silva, J. A. (2025). Dual-stage vacuum pressure swing adsorption for green hydrogen recovery from natural gas grids. Separation and Purification Technology, 360, 130869.
Naquash, A., Qyyum, M. A., Chaniago, Y. D., Riaz, A., Yehia, F., Lim, H., & Lee, M. (2023). Separation and purification of syngas-derived hydrogen: A comparative evaluation of membrane-and cryogenic-assisted approaches. Chemosphere, 313, 137420.
Abdelkareem, M. A., Ayoub, M., Al Najada, R. I., Alami, A. H., & Olabi, A. G. (2024). Hydrogen from waste metals: Recent progress, production techniques, purification, challenges, and applications Sustain.