Integration of Pyrolysis with other Thermochemical Processes for Sustainable Hydrogen Production: A Review
Main Article Content
Abstract
This study focused on exploring the integration of pyrolysis with other thermochemical processes as an alternative strategy for an efficient production of hydrogen. Pyrolysis is a thermochemical process that involves the decomposition of organic waste matter in the absence of oxygen to produce gaseous products, liquid and solid residues. Combining pyrolysis with gasification, steam reforming or carbon capture will lead to the increased efficiency in hydrogen production as discovered from the consulted literature study. This approach is not limited to increase in hydrogen output; it however, contributes to reduction in greenhouse gas emissions through the use of renewable feedstock like agricultural biomass. Thus, the synergies between the thermochemical; processes help in the optimization of energy recovery and the generation of valuable products. However, despite these aforementioned benefits, there are still challenges associated process integration, energy efficiency as well as the scalability. Thus, continuous research and advancement in technology using other thermochemical processes would be key contributors to a sustainable hydrogen production as well as cleaner energy in future.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Kim, D., Lee, S., Woo, S. Y., & Park, K. Y. (2025). Enhanced hydrogen production through temperature-optimized pyrolysis of mixed plastic waste for sustainable energy recovery. Process Safety and Environmental Protection, 196, 106934.
Buekens, A. G., & Huang, H. (1998). Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes. Resources, Conservation and Recycling, 23(3), 163-181.
Cudjoe, D., & Zhu, B. (2024). Gasification of medical plastic waste into hydrogen: Energy potential, environmental benefits and economic feasibility. Fuel, 371, 132150.
Dodds, P. E., Staffell, I., Hawkes, A. D., Li, F., Grünewald, P., McDowall, W., & Ekins, P. (2015). Hydrogen and fuel cell technologies for heating: A review. International journal of hydrogen energy, 40(5), 2065-2083.
Erdem, K., Han, D. G., & Midilli, A. (2024). A parametric study on hydrogen production by fluidized bed co-gasification of biomass and waste plastics. International Journal of Hydrogen Energy, 52, 1434-1444.
Habib, M. A., Abdulrahman, G. A., Alquaity, A. B., & Qasem, N. A. (2024). Hydrogen combustion, production, and applications: A review. Alexandria Engineering Journal, 100, 182-207.
Jang, Y. C., Lee, G., Kwon, Y., Lim, J. H., & Jeong, J. H. (2020). Recycling and management practices of plastic packaging waste towards a circular economy in South Korea. Resources, Conservation and Recycling, 158, 104798.
Kunwar, B., Cheng, H. N., Chandrashekaran, S. R., & Sharma, B. K. (2016). Plastics to fuel: a review. Renewable and Sustainable Energy Reviews, 54, 421-428.
Jahirul, M. I., Rasul, M. G., Schaller, D., Khan, M. M. K., Hasan, M. M., & Hazrat, M. A. (2022). Transport fuel from waste plastics pyrolysis–A review on technologies, challenges and opportunities. Energy Conversion and Management, 258, 115451.
Alam, S. S., Husain Khan, A., & Khan, N. A. (2022). Plastic waste management via thermochemical conversion of plastics into fuel: a review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 1-20.
Li, N., Liu, H., Cheng, Z., Yan, B., Chen, G., & Wang, S. (2022). Conversion of plastic waste into fuels: A critical review. Journal of Hazardous Materials, 424, 127460.
Nanda, S., & Berruti, F. (2021). Thermochemical conversion of plastic waste to fuels: a review. Environmental Chemistry Letters, 19(1), 123-148.
Gao, F. (2010). Pyrolysis of waste plastics into fuels.
Rathi, B. S., Kumar, P. S., & Rangasamy, G. (2023). A sustainable approach on thermal and catalytic conversion of waste plastics into fuels. Fuel, 339, 126977.
Rahman, M. H., Bhoi, P. R., & Menezes, P. L. (2023). Pyrolysis of waste plastics into fuels and chemicals: A review. Renewable and Sustainable Energy Reviews, 188, 113799.
Kwon, G., Cho, D. W., Park, J., Bhatnagar, A., & Song, H. (2023). A review of plastic pollution and their treatment technology: A circular economy platform by thermochemical pathway. Chemical Engineering Journal, 464, 142771.
Silva, A. L. P., Prata, J. C., Walker, T. R., Duarte, A. C., Ouyang, W., Barcelò, D., & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical engineering journal, 405, 126683.
Ingale, G. U., Park, D. H., Yang, C. W., Kwon, H. M., Wi, T. G., Park, Y. J., ... & Lee, U. D. (2025). Low-carbon hydrogen production by molten metal–catalyzed methane pyrolysis: Catalysts, reactor design, and process development. Renewable and Sustainable Energy Reviews, 208, 114999.
Abdin, Z., Zafaranloo, A., Rafiee, A., Mérida, W., Lipiński, W., & Khalilpour, K. R. (2020). Hydrogen as an energy vector. Renewable and sustainable energy reviews, 120, 109620.
Krajačić, G., Martins, R., Busuttil, A., Duić, N., & da Graça Carvalho, M. (2008). Hydrogen as an energy vector in the islands’ energy supply. International Journal of Hydrogen Energy, 33(4), 1091-1103.
Abifarin, J. K., Torres, J. F., & Lu, Y. (2024). 2D materials for enabling hydrogen as an energy vector. Nano Energy, 109997.
Fonseca, J. D., Camargo, M., Commenge, J. M., Falk, L., & Gil, I. D. (2019). Trends in design of distributed energy systems using hydrogen as energy vector: A systematic literature review. International journal of hydrogen energy, 44(19), 9486-9504.
Orecchini, F. (2006). The era of energy vectors. International journal of hydrogen energy, 31(14), 1951-1954.
His, S. (2004). Hydrogen: an energy vector for the future?
Danieli, P., Lazzaretto, A., Al-Zaili, J., Sayma, A., Masi, M., & Carraro, G. (2022). The potential of the natural gas grid to accommodate hydrogen as an energy vector in transition towards a fully renewable energy system. Applied Energy, 313, 118843.
Tujjohra, F., Haque, M. E., Kader, M. A., & Rahman, M. M. (2025). Sustainable valorization of textile industry cotton waste through pyrolysis for biochar production. Cleaner Chemical Engineering, 100161.
Mishra, R., Shu, C. M., Gollakota, A. R., & Pan, S. Y. (2024). Unveiling the potential of pyrolysis-gasification for hydrogen-rich syngas production from biomass and plastic waste. Energy Conversion and Management, 321, 118997.
Chen, P., Xie, Q., Addy, M., Zhou, W., Liu, Y., Wang, Y., ... & Ruan, R. (2016). Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production. Bioresource technology, 215, 163-172.
Yang, Z., Lü, F., Zhang, H., Wang, W., Shao, L., Ye, J., & He, P. (2021). Is incineration the terminator of plastics and microplastics?. Journal of Hazardous Materials, 401, 123429.
Chae, Y., & An, Y. J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental pollution, 240, 387-395.
Dai, Y., Shi, J., Zhang, N., Pan, Z., Xing, C., & Chen, X. (2022). Current research trends on microplastics pollution and impacts on agro-ecosystems: A short review. Separation Science and Technology, 57(4), 656-669.
Jain, M. (2021). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. South Asian Journal of Marketing & Management Research, 11(11), 115-120.
Kumar, M., Chen, H., Sarsaiya, S., Qin, S., Liu, H., Awasthi, M. K., ... & Taherzadeh, M. J. (2021). Current research trends on micro-and nano-plastics as an emerging threat to global environment: A review. Journal of Hazardous Materials, 409, 124967.
Allouzi, M. M. A., Tang, D. Y. Y., Chew, K. W., Rinklebe, J., Bolan, N., Allouzi, S. M. A., & Show, P. L. (2021). Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. Science of the Total Environment, 788, 147815.
Okoffo, E. D., O'Brien, S., Ribeiro, F., Burrows, S. D., Toapanta, T., Rauert, C., ... & Thomas, K. V. (2021). Plastic particles in soil: state of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts. Environmental Science: Processes & Impacts, 23(2), 240-274.
Chowdhury, G. W., Koldewey, H. J., Niloy, M. N. H., & Sarker, S. (2022). The ecological impact of plastic pollution in a changing climate. Emerging Topics in Life Sciences, 6(4), 389-402.
Yiin, C. L., Quitain, A. T., Yusup, S., Uemura, Y., Sasaki, M., & Kida, T. (2018). Sustainable green pretreatment approach to biomass-to-energy conversion using natural hydro-low-transition-temperature mixtures. Bioresource technology, 261, 361-369.
Remón, J., Arcelus-Arrillaga, P., García, L., & Arauzo, J. (2018). Simultaneous production of gaseous and liquid biofuels from the synergetic co-valorisation of bio-oil and crude glycerol in supercritical water. Applied energy, 228, 2275-2287.
Lin ChiuYue, L. C., Nguyen ThiMaiLinh, N. T., Chu ChenYeon, C. C., Leu HoangJyh, L. H., & Lay ChyiHow, L. C. (2018). Fermentative biohydrogen production and its byproducts: a mini review of current technology developments.
Ochieng, R., & Sarker, S. (2025). Energy and techno-economic analysis of integrated supercritical water gasification of sewage sludge and fast pyrolysis of wood for power, heat, and hydrogen production. Chemical Engineering Science, 121236.
Boretti, A. (2024). Advances in Sustainable Turquoise Hydrogen Production via Methane Pyrolysis in Molten Metals. Cleaner Chemical Engineering, 100139.
Abdollahi, M. R., Nathan, G. J., & Jafarian, M. (2023). Process configurations to lower the temperature of methane pyrolysis in a molten metal bath for hydrogen production. International Journal of Hydrogen Energy, 48(100), 39805-39822.
Aldhafeeri, T., Tran, M. K., Vrolyk, R., Pope, M., & Fowler, M. (2020). A review of methane gas detection sensors: Recent developments and future perspectives. Inventions, 5(3), 28.
Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., ... & Hamburg, S. P. (2018). Assessment of methane emissions from the US oil and gas supply chain. Science, 361(6398), 186-188.
Angikath, F., Pezzella, G., & Sarathy, S. M. (2022). Bubble-size distribution and hydrogen evolution from pyrolysis of hydrocarbon fuels in a simulated Ni0. 27Bi0. 73 column reactor. Industrial & Engineering Chemistry Research, 61(34), 12369-12382.
Boretti, A., Castelletto, S., & Al-Zubaidy, S. (2019). Concentrating solar power tower technology: present status and outlook. Nonlinear Engineering, 8(1), 10-31.
Boretti, A. (2021). Concentrated solar energy‐driven carbon black catalytic thermal decomposition of methane. International Journal of Energy Research, 45(15), 21497-21508.
Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., ... & Mac Dowell, N. (2018). Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 11(5), 1062-1176.
Chen, Q., Schissel, C., Kimura, Y., McGaughey, G., McDonald-Buller, E., & Allen, D. T. (2023). Assessing detection efficiencies for continuous methane emission monitoring systems at oil and gas production sites. Environmental science & technology, 57(4), 1788-1796.
Sobri, S., Wardana, I. N. G., Wijayanti, W., & Hamidi, N. (2025). Clove (Syzygium aromaticum) for greener plastic catalytic pyrolysis: A novel catalyst for enhanced hydrogen production and carbon capture. International Journal of Hydrogen Energy, 99, 312-327.
Wang, Y., Veksha, A., Ong, J., Ueki, Y., Yoshiie, R., Naruse, I., & Lisak, G. (2025). The role of post-pyrolysis carbon dioxide capture in hydrogen recovery from waste-derived pyrolysis gas. Fuel, 381, 133293.
Zhao, Z., Kong, W., Wu, S., Zeng, X., & Cui, P. (2023). High quality syngas production from catalytic steam gasification of biomass with calcium-rich construction waste. Journal of the Energy Institute, 111, 101433.
Veksha, A., Wang, Y., Foo, J. W., Naruse, I., & Lisak, G. (2023). Defossilization and decarbonization of hydrogen production using plastic waste: temperature and feedstock effects during thermolysis stage. Journal of Hazardous Materials, 452, 131270.
Okoye, C. O., Zhu, M., Jones, I., Zhang, J., Zhang, Z., & Zhang, D. (2022). An investigation into the preparation of carbon black by partial oxidation of spent tyre pyrolysis oil. Waste Management, 137, 110-120.
Wang, Y., Chang, B. P., Veksha, A., Kashcheev, A., Lipik, V., Yoshiie, R., ... & Lisak, G. (2024). Processing plastic waste via pyrolysis-thermolysis into hydrogen and solid carbon additive to ethylene-vinyl acetate foam for cushioning applications. Journal of Hazardous Materials, 464, 132996.
Kong, P., Sun, J., Li, K., Jiang, L., Sun, R., Zhang, T., & Zhou, Z. (2024). Insight into the deactivation mechanism of CaO-based CO2 sorbent under in-situ coal combustion. Separation and Purification Technology, 346, 127529.
Zhou, D., Wang, Y., Memon, M. Z., Fu, W., Wu, Z., Sheng, S., ... & Ji, G. (2022). The effect of Na2ZrO3 synthesis method on the CO2 sorption kinetics at high temperature. Carbon Capture Science & Technology, 3, 100050.
Wang, Y., Memon, M. Z., Seelro, M. A., Fu, W., Gao, Y., Dong, Y., & Ji, G. (2021). A review of CO2 sorbents for promoting hydrogen production in the sorption-enhanced steam reforming process. International Journal of Hydrogen Energy, 46(45), 23358-23379.
Quan, C., Hu, Y., Guo, A., & Gao, N. (2023). Characteristics of coal slime pyrolysis with integrated CO2 capture. Journal of Analytical and Applied Pyrolysis, 175, 106218.
Çelik, A., Shirsath, A. B., Syla, F., Müller, H., Lott, P., & Deutschmann, O. (2024). On the role of hydrogen inhibition in gas-phase methane pyrolysis for carbon capture and hydrogen production in a tubular flow reactor. Journal of Analytical and Applied Pyrolysis, 181, 106628.