Carbon Dots Derived from Waste Fish Scale for Enhanced Removal of Levofloxacin Drug: Parametric Optimization, Isotherm and Kinetic Studies

Main Article Content

Idowu Iyabo Olateju
Abel Adekanmi Adeyi
Abdulwahab Giwa

Abstract

The public health and environmental protection have been facing a great challenge for efficient antibiotics' adsorption from aqueous solution. In this work, a carbon dots nanoparticle from biomass (fish scale) was synthesized and employed for antibiotic adsorption. The synthesized fish scale carbon dots (FCD) were characterized by means of the X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier transform infrared (FTIR) analyses. Experiments on adsorption were performed to examine the capability of the synthesized adsorbent for adsorption of Levofloxacin. The optimum conditions were ascertained through the use of Response Surface Methodology (RSM) design to increase the effectiveness of levofloxacin removal, and there was 96.03% removal efficiency of 60 minutes contact time, 10 mg/L levofloxacin concentration and FCD dosage of 0.2 g/L. Also, the adsorption experiments indicated that at the lowest concentration of 10 mg/L, at time 45 min and 0.15 mg dosage the adsorption rate was high. For the kinetics data, the pseudo-second order model best fit the data. Furthermore, the Redlich-Peterson model fit isothermal data the best.

Article Details

How to Cite
[1]
I. I. Olateju, A. A. Adeyi, and A. Giwa, “Carbon Dots Derived from Waste Fish Scale for Enhanced Removal of Levofloxacin Drug: Parametric Optimization, Isotherm and Kinetic Studies”, AJERD, vol. 7, no. 2, pp. 352–363, Sep. 2024.
Section
Articles

References

Taiwo A.E., Musonge P., & Jegede O.D. (2024). Bioprocessing of Industrial Wastewater for Removal of Heavy Metal Ion by Ulva Lactuca (seaweed) Biomass. Chemical Engineering Transactions, 109, 475-480. DOI:10.3303/CET24109080

Scanlon B. R., Fakhreddine S., Rateb A., De Graaf I., Famiglietti J., Gleeson T., Grafton R. Q., Jobbagy E., Kebede S., & Kolusu S. R. (2023). Global water resources and the role of groundwater in a resilient water future. Nature Reviews Earth and Environment, 4, 87-101.

Okey-Onyesolu C. F., Chukwuma E. C., Okoye C. C., & Taiwo A. E. (2022). Application of synthesized Fish Scale Chito-Protein (FSC) for the treatment of abattoir wastewater: Coagulation-flocculation kinetics and equilibrium modeling. Scientific African, 17:1-11. https://doi.org/10.1016/j.sciaf.2022.e01367

Zhou Z., Zhang Z., Feng L., Zhang J., Li Y., Lu T., & Qian H. (2020). Adverse effects of levofloxacin and oxytetracycline on aquatic microbial communities. Science of the Total Environment. 10;734:139499. doi: 10.1016/j.scitotenv.2020.139499.

Chi X., Zeng L., & Du Y. (2022) Adsorption of levofloxacin on natural zeolite: effects of ammonia nitrogen and humic acid. Water Science Technology, 85(10):2928-2944. https://doi.org/10.2166/wst.2022.121

Mohammed N. A., & Omar A. A. (2020). Removal of Antibiotics from Water by Polymer of Intrinsic Microporosity: Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism. Scientific Reports, 10(1):794

World Health Organisation (WHO) (2021). Experts caution Nigerians against indiscriminate use of antibiotics to reduce future health crisis. Abuja awareness, 22 November 2021

Mossab K. Alsaedi, Ghada K. Alothman, Mohammed N. Alnajrani, Omar A. Alsager, Sultan A. Alshmimri, Majed A. Alharbi, Majed O. Alawad, Shahad Alhadlaq, & Seetah Alharbi, (2020). Antibiotic Adsorption by Metal-Organic Framework (UiO-66): A Comprehensive Kinetic, Thermodynamic, and Mechanistic Study. Antibiotics, 9(10):722.

Aleksandra Orzoł, & Agnieszka I. Piotrowicz-Cieślak (2017). Levofloxacin is phytotoxic and modifies the protein profile of lupin seedlings. Environmental Science and Pollution Research. 24:22226–22240. DOI 10.1007/s11356-017-9845-0

Podder V., & Sadiq N.M. Levofloxacin. [Updated 2022 Sep 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545180/#

© 2024 Global Antibiotic Research & Development Partnership (GARD) Foundation.

Hamad M.T.M.H., & El-Sesy, M.E. (2023). Adsorptive removal of levofloxacin and antibiotic resistance genes from hospital wastewater by nano-zero-valent iron and nano-copper using kinetic studies and response surface methodology. Bioresources and Bioprocess. 10 (1)1-29. https://doi.org/10.1186/s40643-022-00616-1

Al-Musawi T.J., Almajidi Y.Q., Al-Essa E.M., Romero-Parra R.M., Alwaily E.R., Mengelizadeh N., Ganji F., & Balarak D. (2023). Levofloxacin Adsorption onto MWCNTs/CoFe2O4 Nanocomposites: Mechanism, and Modeling Using Non-Linear Kinetics and Isotherm Equations. Magnetochemistry, 9(1):1-15. https:// doi.org/10.3390/magnetochemistry 9010009

Kang C., Huang Y., Yang H., Yan X. F., & Chen Z. P. (2020). A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials, 10(11):1-24. https://doi.org/10.3390/nano10112316

Musa Yahaya Pudza, Zurina Zainal Abidin, Suraya Abdul Rashid, Faizah Md Yasin, A.S.M Noor, & Mohammed A. Issa., (2020). ‘Eco-Friendly Sustainable Fluorescent Carbon Dots for the Adsorption of Heavy Metal Ions in Aqueous Environment’. Nanomaterials, 10(2):1-19. https://doi.org/10.3390/nano10020315

Ashraf P.M., Stephen S., & Binsi P. K. (2021). Sustainable process to co synthesize nano carbon dots, nano hydroxyapatite and nano β dicalcium diphosphate from the fish scale. Applied Nanoscience, 11:1929–1947. https://doi.org/10.1007/s13204-021-01875-8

Zhang Y., Gao Z., Yang X., Chang J., Liu Z., & Jiang K. (2019). Fish-scale-derived carbon dots as efficient fluorescent nanoprobes for detection of ferric ions. Royal Society of Chemistry Advances, 9(2):940-949.

Athinarayanan J., Periasamy V.S., & Alshatwi A.A. (2020). Simultaneous fabrication of Carbon nanodots and hydroxyapatite nanoparticles from fish scale for biomedical applications. Material Science and Engineering C, 117:1-10, https://doi.org/10.1016/j.msec.2020.111313.

Rahman, N. U., Ullah, I., Alam, S., Khan, M. S., Shah, L. A., Zekker, I., Burlakovs, J., Kallistova, A., Pimenov, N., Jani, Y., & Zahoor, M. (2021) Activated Ailanthus altissima sawdust as adsorbent for removal of acid yellow 29 from wastewater: kinetic approach. Water, 13(15):1-113 https://doi.org/10.3390/w13152136

Pitmental, C. H., Freire, M. S., Gomez-Diaz, D., & Gonzalez-Alvarez, J. (2023) Preparation of activated carbon from pine (Pinus radiata) sawdust by chemical activation with zinc chloride for wood dye adsorption. Biomass Conversion and Biorefinery, 13:16537-16555. https://doi.org/10.1007/s13399-023-04138-4

Azam N, Najabat Ali M., & Javaid Khan T. (2021). Carbon Quantum Dots for Biomedical Applications: Review and Analysis. Frontier in Material 8:1-21. doi: 10.3389/fmats.2021.700403

Mehdi Esmaeili Bidhendi, Zahra Poursorkh, Hassan Sereshti, Hamid Rashidi Nodeh, Shahabaldin Rezania & Muhammad Afzal Kamboh. (2020). Nano-Size Biomass Derived from Pomegranate Peel for Enhanced Removal of Cefixime Antibiotic from Aqueous Media: Kinetic, Equilibrium and Thermodynamic Study. International Journal of Environmental Research and Public Health, 17(12):1-14. doi: 10.3390/ijerph17124223.

Athinarayanan J., Periasamy V.S., & Alshatwi A.A. (2020). Simultaneous Fabrication of Carbon Nanodots and Hydroxyapatite Nanoparticles from Fish Scale for Biomedical Applications. Material Science and Engineering C, 117:1-12. https://doi.org/10.1016/j.msec.2020.111313

Tohamy H-AS., El-Sakhawy M., & Kamel S. (2023). Eco friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent. Journal of Fluorescence. 33:423–435 https://doi.org/10.1007/s10895-022-03085-z

Adeyi A.A., Bitrus N. K., Abdullah L.C., Popoola L.T., Chijioke-Okere M., Omotara O.O., & Saber S.E., (2023). Effective sequestration of levofloxacin from wastewater by biochar-supported manganese dioxide composite: Experimental study and modelling analyses. Environmental Engineering Research. 28(1):1-8 https://doi.org/10.4491/eer.2021.512

Taiwo A. E., Madzimbamuto T. N., & Ojumu T.V. (2024). Process Optimization and Biotransformation of Ferulic Acid to Vanillin in a Low-Cost Nitrogen Source. ChemEngineering, 8(68): 1-13. https://doi.org/10.3390/ chemengineering804006

Mahmoud A.E.D., & Fawzy M., (2023). Decontamination of levofloxacin from water using a novel chitosan–walnut shells composite: linear, nonlinear, and optimization modelling. Applied Water Science 13(12):1-19. https://doi.org/10.1007/s13201-023-02045-7

Altaf S., Zafar R., & Zaman W.Q. (2021) Removal of levofloxacin from aqueous solution by green synthesized magnetite (Fe3O4) nanoparticles using Moringa olifera: kinetics and reaction mechanism analysis. Ecotoxicology and Environmental Safety 226:1-11. https://doi.org/10.1016/j.ecoenv.2021.112826

Abukhadra M.R., Saad I., & Khim J.S. (2022). Enhanced oxidation of antibiotic residuals (Levofloxacin) using a green composite of ZnO@polyaniline/bentonite (Zn@PA/BE) as multifunctional photocatalyst under visible light. International Journal of Environmental Analytical Chemistry. 104(4):879-899. DOI:10.1080/03067319.2022.2032010

Mpelane S, Mketo N, & Bingwa N., (2022). Synthesis of mesoporous iron oxide nanoparticles for adsorptive removal of levofloxacin from aqueous solutions: kinetics, isotherms, thermodynamics and mechanism. Alex Engineering Journal. 61(11):8457–8468

Ahamad K.U., Singh R.I., Choudhury H., & Sharma M.R. (2018). Equilibrium and kinetics modelling of fluoride adsorption onto activated alumina, alum and brick powder. Groundwater for. Sustainable Development, 7:452-458. https://doi.org/10.1016/j.gsd.2018.06.005