Recent Advances on the Adsorption of Pollutants from Aqueous Media Using Clay-Based Adsorbents

Main Article Content

Toyin Adedayo Oreofe
Akeem Olatunde Arinkoola
Solomon Olugbenga Bello
Oladipupo Olaosebikan Ogunleye

Abstract

The sequestration of pollutants from wastewater remains an active research topic recently owing to persistent disposal of industrial wastewater to waterbodies without adequate management strategies available especially in the developing countries. Different technologies have been employed in which adsorption has found a wide range of application. Today, various low cost adsorbents have been developed and evaluated for the adsorption processes. Clay mineral is one of the low cost natural adsorbents requiring minimum modification to enhance its adsorptive capacities. To maintain a clean and safe environment the water bodies must be free of contaminants of emerging concern. The availability of potable water is a global effort, as two of the UN's seventeen Sustainable Development Goals (SDG) are centered on water which is not surprising. Goal 6 focuses on clean water and sanitation whereas Goal 14 focuses on life below the water. With this in view, the availability of potable water highlights the significance of this study, which analyzes the potential of clay minerals as a good precursor for water treatment. Therefore, this review focuses on the clay minerals, its availability in Nigeria, classification and modification of the clay adsorbent.

Article Details

How to Cite
[1]
T. A. Oreofe, A. O. Arinkoola, S. O. Bello, and O. O. Ogunleye, “Recent Advances on the Adsorption of Pollutants from Aqueous Media Using Clay-Based Adsorbents”, AJERD, vol. 7, no. 2, pp. 236-250, Sep. 2024.
Section
Articles

References

Khan, S. A. & Khan, T. A. (2021). Clay-hydrogel nanocomposites for adsorptive amputation of environmental contaminants from aqueous phase: A review, Journal of Environmental Chemical Engineering, 9,105575
[2] Mishra, A., Mehta, A., & Basu, S. (2018). Clay supported TiO2 nanoparticles for photocatalytic degradation of environmental pollutants: A review, Journal of Environmental Chemical Engineering, 6 (6), 088–107
[3] Mateus, A., Torres, J., Marimon-Bolivar, W., & Pulgarín, L. (2021). Implementation of magnetic bentonite in food industry wastewater treatment for reuse in agricultural irrigation, Water Resources and Industry, 26,100154
[4] Zhang, L., Wang, C., Yang, R., Zhou, G., Yu, P., Sun, L., Hao, T., Wang, J., & Liu, Y. (2021). Novel environment-friendly magnetic bentonite nanomaterials functionalized by carboxymethyl chitosan and 1-(2-pyridinylazo)-2-naphthaleno for adsorption of Sc(III), Applied Surfurce Science, 566(1), 150644
[5] Tapia-Orozco, N., Santiago-Toledo, G., Barrón, V., Espinosa-García, A. M., García-García, J. A. & García-Arrazola, R., (2017). Environmental epigenomics: Current approaches to assess epigenetic effects of endocrine disrupting compounds (EDC’s) on human health, Environmental Toxicology and Pharmacology, 51(1), 94–99.
[6] Mao, S. & Gao, M. (2021). Functional organoclays for removal of heavy metal ions from water: A review, Journal of Molecular Liquids, 334(1), 116143.
[7] Moosa, A., Shu, H., Sarachana, T. & Hu, V. W. (2018). Are endocrine disrupting compounds environmental risk factors for autism spectrum disorder?, Hormones and Behavior, 101(1), 13–21.
[8] Kabir, E R., Rahman, M. S., & Rahman, I. (2015). A review on endocrine disruptors and their possible impacts on human health, Environmental Toxicology and Pharmacology, 40(1), 241–258.
[9] Krantzberg, G. & Hartley, P. (2018). Feasible policy development and implementation for the destruction of endocrine disruptors in wastewater, Science of the Total Environment, 631–632, 246–251.
[10] Angkawijaya, A. E., Santoso, S. P., Bundjaja, V., Soetaredjo, F. E., Gunarto, C., Ayucitra, A., Ju, Y. H., Go, A. W., & Ismadji, S. (2020). Studies on the performance of bentonite and its composite as phosphate adsorbent and phosphate supplementation for plant, Journal of the Hazardous Material, 399, 123130.
[11] Han, H., Rafiq, M. K., Zhou, T., Xu, R., Mašek, O. & Li, X. (2019). A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants, Journal of the Hazardous Material, 369, 780–96.
[12] Borthakur, P., Aryafard, M., Zara, Z., David, Ř., Minofar, B., Das, M. R. & Vithanage, M. (2021). Computational and experimental assessment of pH and specific ions on the solute solvent interactions of clay-biochar composites towards tetracycline adsorption: Implications on wastewater treatment, Journal of Environmental Management, 283, 111989.
[13] Jin, H., Yu, Y., Zhang, L., Yan, R. & Chen, X. (2019). Polarity reversal electrochemical process for water softening, Separation and Purification Technology, 210, 943–949.
[14] Driessen, R T., Knaken, B., Buzink, T., Jacobs, D.A.F., Hrstka, J., & Brilman, D W. F. (2020). Design and proof of concept of a continuous pressurized multi-stage fluidized bed setup for deep sour gas removal using adsorption, Powder Technology, 366, 859–872.
[15] Patel, H. (2019) Fixed-bed column adsorption study: A comprehensive review, Applied Water Science, 9, 45.
[16] Drobíková, K., Štrbová, K., Tokarcíková, M., Motyka, O., & Seidlerová, J. (2019). Magnetically modified bentonite: Characterization and stability, Materials Today: Proceedings, 37, 53–57.
[17] Ogunleye, O. O., Ajala, M. A., & Agarry, S. E., (2014). Evaluation of Biosorptive Capacity of Banana (Musa paradisiaca) Stalk for Lead(II) Removal from Aqueous Solution, Journal of Environmental Protection, 05(15), 1451–1465.
[18] Mukhopadhyay, R., Bhaduri, D., Sarkar, B., Rusmin, R., Hou, D., Khanam, R., Sarkar, S., Kumar, B. J., Vithanage M., Bhatnagar, A. & Ok, Y. S. (2020). Clay–polymer nanocomposites: Progress and challenges for use in sustainable water treatment, Journal of Hazardous Materials, 383, 121125.
[19] Olu-Owolabi, B. I., Diagboya, P. N., Mtunzi, F. M., & Düring, R. A, (2021). Utilizing eco-friendly kaolinite-biochar composite adsorbent for removal of ivermectin in aqueous media, Journal of Environmental Management, 279, 111619
[20] Mustapha, S., Tijani, J. O., Ndamitso, M. M., Abdulkareem, A. S., Shuaib, D. T. & Mohammed, A. K. (2021). Adsorptive removal of pollutants from industrial wastewater using mesoporous kaolin and kaolin/TiO2 nanoadsorbents, Environmental Nanotechnology, Monitoring and Management, 15, 100414.
[21] Zha, J., Huang, Y., Clough, P. T., Xia, Z., Zhu, Z., Fan, C., Yu, M., Yan, Y. & Cheng, H. (2021). Green production of a novel sorbent from kaolin for capturing gaseous PbCl2 in a furnace, Journal of Hazardous Materials, 404, 124045.
[22] Ahmad, M. A., Ahmed, N. B., Adegoke, K. A., & Bello, O. S., (2019). Sorption studies of methyl red dye removal using lemon grass (Cymbopogon citratus) Chemical Data Collections, 22, 100249
[23] Ogunleye, O. O., Arinkoola, A. O., Eletta, O. A., Agbede, O. O., Osho, Y. A., Morakinyo, A. F. & Hamed, J. O. (2020). Green corrosion inhibition and adsorption characteristics of Luffa cylindrica leaf extract on mild steel in hydrochloric acid environment, Heliyon, (6)1, e03205
[24] Khadhri, N., El Khames, S. M., Ben Mosbah, M., & Moussaoui Y,. (2019) Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole, Journal of Environmental Chemical Engineering, 7(1), 102775.
[25] Salam, M. A., Mokhtar, M., Albukhari, S. M., Baamer, D. F., Palmisano, L. & Abukhadra, M. R. (2021). Insight into the role of the zeolitization process in enhancing the adsorption performance of kaolinite/diatomite geopolymer for effective retention of Sr (II) ions; batch and column studies, Journal of Environmental Management, 294, 112984.
[26] Nehra, M., Dilbaghi, N., Singhal, N. K., Hassan, A. A., Kim, K. H., & Kumar, S. (2019). Metal organic frameworks MIL-100(Fe) as an efficient adsorptive material for phosphate management, Environmental Research, 169, 229–236.
[27] Li, Y., Yu, H., Liu, L., & Yu, H. (2021) Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates, Journal of Hazardous Materials, 420, 126655.
[28] Dansarai, M M., Bawa, M. A., & Tokan, A. (2020). Nigerian Clay Deposits for use as Refractory Materials in Metallurgical Industries-A Review, International Journal of Engineering Research & Technology (IJERT), 9, 707–711
[29] Aramide, F. O., Alaneme, K. K., Olubambi, P. A., & Borode, J. O. (2014). Characterization of some clay deposits in South West Nigeria, Leonardo Electronic Journal of Practices and Technologies, 13(25), 46–57.
[30] Eyankware, M. O., Ogwah, C. & Ike, J. C. (2021). A Synoptic Review of Mineralogical and Chemical Characteristics of Clays in the Southern Part of Nigeria, Research in Ecology, 3(2), 32–45
[31] Afolabi, R. O., Orodu, O. D., & Efeovbokhan, V. E. (2017). Properties and application of Nigerian bentonite clay deposits for drilling mud formulation: Recent advances and future prospects, Applied Clay Science,143, 39–49
[32] Ihekweme, G. O., Shondo, J. N., Orisekeh, K. I., Kalu-Uka, G. M., Nwuzor, I. C. & Onwualu, A. P. (2020). Characterization of certain Nigerian clay minerals for water purification and other industrial applications, Heliyon, 6, e03783
[33] Starý, J., Jirásek, J., Pticen, F., Zahradník, J. & Sivek, M. (2021). Review of production, reserves, and processing of clays (including bentonite) in the Czech Republic, Applied Clay Science, 205, 106049
[34] Jongs, L S., Jock, A A., Ekanem, O. E., & Jauro, A. (2018). Investigating the Industrial Potentials of Some Selected Nigerian Clay Deposits, Journal of Minerals and Materials Characterization and Engineering, 6, 569–586.
[35] Shan, Y., Meng, Q., Yu, S., Mo, H., & Li, Y. (2020). Energy based cyclic strength for the influence of mineral composition on artificial marine clay, Engineering Geology, 274, 105713
[36] Awad, A M., Shaikh, S..M. R., Jalab, R., Gulied, M. H., Nasser, M. S., Benamor, A. & Adham, S. (2019) Adsorption of organic pollutants by natural and modified clays: A comprehensive review, Separation and Purification Technology, 228, 115719.
[37] Otunola, B. O., & Ololade, O. O. (2020). A review on the application of clay minerals as heavy metal adsorbents for remediation purposes, Environmental Technology and Innovation, 18, 100692.
[38] Moreno-Maroto, J. M. & Alonso-Azcárate, J. (2018). What is clay? A new definition of “clay” based on plasticity and its impact on the most widespread soil classification systems, Applied Clay Science, 161, 57–63
[39] Wang, P., Wang, X., Chen, X. & Ren L. (2021). Effects of bentonite on antibiotic resistance genes in biogas slurry and residue from thermophilic and mesophilic anaerobic digestion of food waste, Bioresource Technology, 336, 125322.
[40] Shamsudin, M. S., & Shahadat, M. (2019). Cellulose/bentonite-zeolite composite adsorbent material coating for treatment of N-based antiseptic cationic dye from water, Journal of Water Process Engineering, 29, 100764.
[41] Saeed, M., Munir, M., Nafees, M., Shah, S. S. A, Ullah, H. & Waseem, A. (2020). Synthesis, characterization and applications of silylation based grafted bentonites for the removal of Sudan dyes: Isothermal, kinetic and thermodynamic studies, Microporous and Mesoporous Materials, 291, 109697. https://doi.org/10.1016/j.micromeso.2019.109697
[42] Cao, L., Li, Z., Xiang, S., Huang, Z., Ruan. R. & Liu, Y. (2019). Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater, Bioresource Technology, 284, 448–455. https://doi.org/10.1016/j.biortech.2019.03.043
[43] Kostenko, L., Artiushenko, O., Kovalchuk, T., Tomashchuk, I. & Zaitsev, V. (2019). Preparation and characterization of organofunctionalized bentonite clay bearing aminophosphonic groups in heavy metal uptake, Journal of Environmental Chemical Engineering, 7(5), 103434. https://doi.org/10.1016/j.jece.2019.103434
[44] Erdoğan, A. B. (2018). Hydrogen adsorption on natural and sulphuric acid treated sepiolite and bentonite, International Journal of Hydrogen Energy, 43(2), 831–838. https://doi.org/10.1016/j.ijhydene.2017.10.159
[45] Largo, F., Haounati, R., Akhouairi, S., Ouachtak, H., El Haouti, R., El Guerdaoui A., Hafid, N., Santos, D. M. F., Akbal, F., Kuleyin, A., Jada, A., & Addi, A. A. (2020). Adsorptive removal of both cationic and anionic dyes by using sepiolite clay mineral as adsorbent: Experimental and molecular dynamic simulation studies, Journal of Molecular Liquids, 318, 114247
[46] Bakhtiary, S., Shirvani, M., & Shariatmadari, H. (2013). Characterization and 2,4-D adsorption of sepiolite nanofibers modified by N-cetylpyridinium cations, Microporous Mesoporous Materials. 168, 30–6
[47] Li, Y., Tian, G., Gong, L., Chen, B., Kong, L., & Liang, J. (2020). Evaluation of natural sepiolite clay as adsorbents for aflatoxin B1: A comparative study, Journal of Environmental Chemical Engineering 8, 104052
[48] Zunino, F., & Scrivener, K. (2020) Increasing the kaolinite content of raw clays using particle classification techniques for use as supplementary cementitious materials, Construction and Building Materials, 244, 118335. https://doi.org/10.1016/j.conbuildmat.2020.118335
[49] Derouiche, R., & Baklouti, S. (2021). Phosphoric acid based geopolymerization: Effect of the mechanochemical and the thermal activation of the kaolin, Ceramics International, 47(10), 13446–13456. https://doi.org/10.1016/j.ceramint.2021.01.203
[50] Rasaie, A., Sabzehmeidani, M. M., Ghaedi, M., Ghane-Jahromi, M., & Sedaratian-Jahromi, A. (2021) Removal of herbicide paraquat from aqueous solutions by bentonite modified with mesoporous silica, Materials Chemistry and Physics, 262, 124296. https://doi.org/10.1016/j.matchemphys.2021.124296
[51] Kumar, A., & Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD, Materials Today: Proceedings, 22, 737–742. https://doi.org/10.1016/j.matpr.2019.10.037
[52] Muhammed, N. S., Olayiwola, T., & Elkatatny. S, (2021). A review on clay chemistry, characterization and shale inhibitors for water-based drilling fluids, Journal of Petroleum Science and Engineering, 206, 109043. https://doi.org/10.1016/j.petrol.2021.109043
[53] Zaini, N. S. M., Lenggoro, I. W., Naim, M. N., Yoshida, N., Man, H. C., Bakar. N. F. A., & Puasa, S.W., (2021). Adsorptive capacity of spray-dried pH-treated bentonite and kaolin powders for ammonium removal, Advanced Powder Technology, 32(6), 1833–1843. https://doi.org/10.1016/j.apt.2021.02.036
[54] Maier, M., Beuntner, N., & Thienel, K. C., (2021). Mineralogical characterization and reactivity test of common clays suitable as supplementary cementitious material, Applied Clay Science, 202, 105990. https://doi.org/10.1016/j.clay.2021.105990
[55] Jide, A. (2014) Characterisation of the Nigerian Kankara Kaolinite Clay Particulates for Automobile Friction Lining Material Development, Chemical and Process Engineering Research, 29, 24–34.
[56] Khan, S., Ajmal, S., Hussain, T. & Rahman, M. U., (2023). Clay-based materials for enhanced water treatment: adsorption mechanisms, challenges, and future directions, Journal of Umm Al-Qura University for Applied Sciences, https://doi.org/10.1007/s43994-023-00083-0.
[57] Ruan, K., & Fu, X. L, (2022). A modified Kozeny–Carman equation for predicting saturated hydraulic conductivity of compacted bentonite in confined condition, Journal of Rock Mechanics and Geotechnical Engineering, 14(3), 984–993. https://doi.org/10.1016/j.jrmge.2021.08.010
[58] Nomura, S., Yamamoto, Y., & Sakaguchi, H., (2018). Modified expression of Kozeny–Carman equation based on semilog–sigmoid function, Soils and Foundations, 58(6), 1350–1357. https://doi.org/10.1016/j.sandf.2018.07.011
[59] Tai, P. L., Nguyen, X. X., & Dong, J. J., (2023). A novel method to estimate the Stress-Dependent Kozeny-Carman constant of Low-Permeability, clastic sedimentary rocks, Journal of Hydrology, 621, 129595. https://doi.org/10.1016/j.jhydrol.2023.129595
[60] Adebayo, M. A., Adebomi, J.,I., Abe, T. O., & Areo, F. I., (2020). Removal of aqueous Congo red and malachite green using ackee apple seed–bentonite composite, Colloids and Interface Science Communications, 38, 100311. https://doi.org/10.1016/j.colcom.2020.100311
[61] Auta, M., & Hameed, B. H., (2014) Chitosan-clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue, Chemical Engineering Journal, 237, 352–361. https://doi.org/10.1016/j.cej.2013.09.066
[62] Gómez-Avilés, A., Sellaoui, L., Badawi, M., Bonilla-Petriciolet, A., Bedia, J., & Belver, C. (2021). Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: Experiments and statistical physics modelling, Chemical Engineering Journal, 404, 126601
[63] Fu, C., Zhang, H., Xia, M., Lei, W., & Wang, F., (2020). The single/co-adsorption characteristics and microscopic adsorption mechanism of biochar-montmorillonite composite adsorbent for pharmaceutical emerging organic contaminant atenolol and lead ions, Ecotoxicology and Environmental Safety, 187, 109763. https://doi.org/10.1016/j.ecoenv.2019.109763
[64] Cristina do Nascimento, D., Gurgel, C. M., & Gurgel, A.V.M., (2021). Adsorption of propranolol hydrochloride from aqueous solutions onto thermally treated bentonite clay: A complete batch system evaluation. Journal of Molecular Liquids, 337, 116442
[65] Zhang, W., Wang, L., Su, Y., Liu, Z., & Du, C., (2021). Indium oxide/Halloysite composite as highly efficient adsorbent for tetracycline Removal: Key roles of hydroxyl groups and interfacial interaction, Applied Surface Science, 566, 150708. https://doi.org/10.1016/j.apsusc.2021.150708
[66] Kong, Y., Wang, L., Ge, Y., Su, H., & Li, Z. (2019). Lignin xanthate resin–bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water, Journal of Hazardous Materials, 368, 33–41. https://doi.org/10.1016/j.jhazmat.2019.01.026
[67] Antonelli, R., Martins, F. R., Malpass, G. R. P., da Silva, M. G. C., & Vieira, M. G. A. (2020). Ofloxacin adsorption by calcined Verde-lodo bentonite clay: Batch and fixed bed system evaluation, Journal of Molecular Liquids, 315, 113718
[68] Chang, P. H., Li, Z., Jean, J. S., Jiang, W. T., Wang, C. J., & Lin, K. H., (2012). Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite, Applied Clay Science, 67–68, 158–163. https://doi.org/10.1016/j.clay.2011.11.004
[69] Meneguin, J. G., Moisés, M. P., Karchiyappan, T., Faria, S. H. B., Gimenes, M. L., de Barros, M. A. S. D. & Venkatachalam, S. (2017). Preparation and characterization of calcium treated bentonite clay and its application for the removal of lead and cadmium ions: Adsorption and thermodynamic modeling, Process Safety and Environmental Protection, 111, 244–252. https://doi.org/10.1016/j.psep.2017.07.005
[70] Karthikeyan, P., & Meenakshi, S. (2021). Fabrication of hybrid chitosan encapsulated magnetic-kaolin beads for adsorption of phosphate and nitrate ions from aqueous solutions, International Journal of Biological Macromolecules, 168, 750–759. https://doi.org/10.1016/j.ijbiomac.2020.11.132
[71] Kara, A., Tekin, N., Alan, A., & Şafakli, A., (2016). Physicochemical parameters of Hg(II) ions adsorption from aqueous solution by sepiolite/poly(vinylimidazole), Journal of Environmental Chemical Engineering, 4(2), 1642–1652. https://doi.org/10.1016/j.jece.2016.02.028
[72] Dong, W., Lu, Y., Wang, W., Zong, L., Zhu, Y., Kang, Y., & Wang, A. (2019). A new route to fabricate high-efficient porous silicate adsorbents by simultaneous inorganic-organic functionalization of low-grade palygorskite clay for removal of Congo red, Microporous and Mesoporous Materials, 277, 267–276. https://doi.org/10.1016/j.micromeso.2018.11.013
[73] Zhou, F., Ye, G., Gao, Y., Wang, H., Zhou, S., Liu, Y., & Yan, C. (2022). Cadmium adsorption by thermal-activated sepiolite: Application to in-situ remediation of artificially contaminated soil, Journal of Hazardous Materials, 423, 127104. https://doi.org/10.1016/j.jhazmat.2021.127104
[74] Cecilia, J. A., Vilarrasa-García, E., Cavalcante, C. L., Azevedo, D. C. S., Franco, F., & Rodríguez-Castellón, E. (2018). Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 Capture, Journal of Environmental Chemical Engineering, 6, 4573–4587
[75] Daitx, T. S., Carli, L. N., Crespo, J. S., & Mauler, R. S. (2015). Effects of the organic modification of different clay minerals and their application in biodegradable polymer nanocomposites of PHBV, Applied Clay Science, 115, 157–164. https://doi.org/10.1016/j.clay.2015.07.038
[76] Buchs, A., Calvo-Mendieta, I., Petit, O. & Roman, P. (2021). Challenging the ecological economics of water: Social and political perspectives, Ecological Economics, 190, 107176. https://doi.org/10.1016/j.ecolecon.2021.107176
[77] Yazidi, A., Sellaoui, L., Dotto, G. L., Bonilla-Petriciolet, A., Fröhlich, A. C. & Lamine, A. B. (2019). Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: Application of advanced statistical physics models, Journal of Molecular Liquids, 283, 276–286. https://doi.org/10.1016/j.molliq.2019.03.101
[78] Yu, C., Bahashi, J., & Bi, E., (2019). Mechanisms and quantification of adsorption of three anti-inflammatory pharmaceuticals onto goethite with/without surface-bound organic acids, Chemosphere, 222, 593–602
[79] Ferrer-Polonio, E., Fernández-Navarro, J., Iborra-Clar, M. I., Alcaina-Miranda, M. I, & Mendoza-Roca, J. A., (2020). Removal of pharmaceutical compounds commonly-found in wastewater through a hybrid biological and adsorption process. Journal of Environmental Management, 263, https://doi.org/10.1016/j.jenvman.2020.110368
[80] Quintelas, C., Mesquita, D. P., Torres, A. M., Costa, I., & Ferreira, E. C., (2020). Degradation of widespread pharmaceuticals by activated sludge: Kinetic study, toxicity assessment, and comparison with adsorption processes, Journal of Water Process Engineering, 33, 101061. https://doi.org/10.1016/j.jwpe.2019.101061
[81] Kalhori, E. M., Al-Musawi, T. J., Ghahramani, E., Kazemian, H., & Zarrabi, M. (2017). Enhancement of the adsorption capacity of the light-weight expanded clay aggregate surface for the metronidazole antibiotic by coating with MgO nanoparticles: Studies on the kinetic, isotherm, and effects of environmental parameters, Chemosphere, 175, 8–20
[82] Khalfa, L., Sdiri, A., Bagane, M., & Cervera, M. L. (2021). A calcined clay fixed bed adsorption studies for the removal of heavy metals from aqueous solutions, Journal of Cleaner Production, 278, 123935
[83] Zhong, Z., Li, J., Ma, Y. & Yang, Y. (2021). The adsorption mechanism of heavy metals from coal combustion by modified kaolin: Experimental and theoretical studies, Journal of Hazardous Materials, 418, 126256
[84] Dim, P. E., Mustapha, L. S., Termtanun, M. & Okafor, J. O. (2021). Adsorption of chromium (VI) and iron (III) ions onto acid-modified kaolinite: Isotherm, kinetics and thermodynamics studies, Arabian Journal of Chemistry, 14(4), 103064
[85] Dinh, V., Nguyen, P., Tran, M., & Luu, A. (2022). Chemosphere HTDMA-modified bentonite clay for effective removal of Pb ( II ) from aqueous solution, Chemosphere, 286, 131766
[86] Mahouche-Chergui, S., Boussabounm Z., Oun, A., Kazembeyki, M., Hoover, C. G., Carbonnier, B. & Ouellet-Plamondon, C. M. (2021). Sustainable preparation of graphene-like hybrid nanomaterials and their application for organic dyes removal, Chemical Engineering Science, 236, 116482
[87] Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z. H., Bhatti, H. N. & Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review, Journal of Molecular Liquids, 256, 395–407. https://doi.org/10.1016/j.molliq.2018.02.034
[88] Ngulube, T., Gumbo, J. R., Masindi, V. & Maity, A. (2017). An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review, Journal of Environmental Management, 191, 35–57. https://doi.org/10.1016/j.jenvman.2016.12.031
[89] Ojedokun, A. T. & Bello, O. S. (2017). Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon, Applied Water Science, 7(4), 1965–1977. https://doi.org/10.1007/s13201-015-0375-y
[90] Rehman, M. U., Manan, A., Uzair, M., Khan, A. S., Ullah, A., Ahmad, A. S., Wazir, A. H., Qazi, I. & Khan, M. A. (2021). Physicochemical characterization of Pakistani clay for adsorption of methylene blue: Kinetic, isotherm and thermodynamic study, Materials Chemistry and Physics, 269, 124722. https://doi.org/10.1016/j.matchemphys.2021.124722
[91] da Silva, J. C. S., França, D. B., Rodrigues, F., Oliveira, D. M., Trigueiro, P., Silva Filho, E. C. & Fonseca, M. G. (2021). What happens when chitosan meets bentonite under microwave-assisted conditions? Clay-based hybrid nanocomposites for dye adsorption, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 609, 125584. https://doi.org/10.1016/j.colsurfa.2020.125584
[92] Gamoudi, S. & Srasra, E. (2019). Adsorption of organic dyes by HDPy+-modified clay: Effect of molecular structure on the adsorption, Journal of Molecular Structure, 1193, 522–531. https://doi.org/10.1016/j.molstruc.2019.05.055
[93] Onu, C. E., Nwabanne, J. T., Ohale, P. E., & Asadu, C. O. (2021). Comparative analysis of RSM, ANN and ANFIS and the mechanistic modeling in eriochrome black-T dye adsorption using modified clay, South African Journal of Chemical Engineering, 36, 24–42. https://doi.org/10.1016/j.sajce.2020.12.003
[94] Davoodi S M, Taheran M, Brar S K, Galvez-Cloutier R & Martel R 2019 Hydrophobic dolomite sorbent for oil spill clean-ups: Kinetic modeling and isotherm study, Fuel, 251 57–72
[95] Adams, F. V., Peter, A., Joseph, I. V., Sylvester, O. P., & Mulaba-Bafubiandi, A. F. (2019). Purification of crude oil contaminated water using fly ash/clay, Journal of Water Process Engineering, 30, 100471. https://doi.org/10.1016/j.jwpe.2017.08.009
[96] Dai, W. J., Wu, P., Liu, D., Hu, J., Cao, Y., Liu, T. Z., Okoli, C. P., Wang, B. & Li, L. (2020). Adsorption of Polycyclic Aromatic Hydrocarbons from aqueous solution by Organic Montmorillonite Sodium Alginate Nanocomposites, Chemosphere, 251, 126074. https://doi.org/10.1016/j.chemosphere.2020.126074
[97] Peng, M., Chen, G., Zeng, G., Chen, A., He, K., Huang, Z., Hu, L., Shi, J., Li, H., Yuan, L., & Huang, T. (2018). Superhydrophobic kaolinite modified graphene oxide-melamine sponge with excellent properties for oil-water separation, Applied Clay Science, 163, 63–71. https://doi.org/10.1016/j.clay.2018.07.008
[98] Rotaru, A., Cojocaru, C., Cretescu, I., Pinteala, M., Timpu, D., Sacarescu, L., & Harabagiu, V. (2014). Performances of clay aerogel polymer composites for oil spill sorption: Experimental design and modeling, Separation and Purification Technology, 133, 260–275. https://doi.org/10.1016/j.seppur.2014.06.059
[99] Wang, Y., Chen, A., Peng, M., Tan, D., Liu, X., Shang, C., Luo, S. & Peng, L., (2019). Preparation and characterization of a fluorizated kaolin–modified melamine sponge as an absorbent for efficient and rapid oil/water separation, Journal of Cleaner Production, 217, 308–316. https://doi.org/10.1016/j.jclepro.2019.01.253
[100] Lazaratou, C. V., Vayenas, D. V., & Papoulis, D. (2020). The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review, Applied Clay Science, 185, 105377