Prediction of Urban House Rental Prices in Lagos - Nigeria: A Machine Learning Approach

Main Article Content

Sunday Oluyele
Juwon Akingbade
Victor Akinode
Royal Idoghor

Abstract

Often, prospective tenants need to know the rental price of an apartment, and homeowners need to know how best to price their apartments. This work aims to predict house rental prices in Lagos, Nigeria, using machine learning by examining the relationship between the rental price and features such as the number of bedrooms, bathrooms, toilets, location and house status(newly built, furnished, and/or serviced). Five machine learning models were trained and evaluated using mean absolute error (MAE), root mean squared error (RMSE) and r-square (R2); the random forest regression model outperformed the other four models with the lowest MAE, RMSE and the highest R2. This study also revealed that the number of bedrooms and the apartment's location are the most significant predictors, confirmed using the feature importance analysis. The developed model can be used to estimate the rental price of a property in Lagos, Nigeria.

Article Details

How to Cite
[1]
S. Oluyele, J. Akingbade, V. Akinode, and R. Idoghor, “Prediction of Urban House Rental Prices in Lagos - Nigeria: A Machine Learning Approach”, AJERD, vol. 7, no. 2, pp. 216–228, Aug. 2024.
Section
Articles

References

World Bank. Lagos Diagnostic Study and Pathway for Transformation - A Rapid Multi-Sector Analytical Review of the Mega-City (English). Washington, D.C.: World Bank Group. http://documents.worldbank.org/curated/en/099062123034023646/P1750310c8d0390000afa70e5c583aa3b87

United Nations Human Settlements Programme (UN-Habitat). (2018). The State of African Cities 2018: The Geography of African Investment.

Truong, Q., Nguyen, M., Dang, H., & Mei, B. (2020). Housing Price Prediction via Improved Machine Learning Techniques. Procedia Computer Science, 174(1), 433-442. DOI: https://doi.org/10.1016/j.procs.2020.06.111

Nwankwo, M. P., Onyeizu, N. M., Asogwa, E. C., & Ejike, C. O. (2023). Prediction of House Prices in Lagos-Nigeria Using Machine Learning Models.European Journal of Theoretical and Applied Sciences, 1(5), 313-326. https://doi.org/10.59324/ejtas.2023.1(5).22 . DOI: https://doi.org/10.59324/ejtas.2023.1(5).22

Chowhaan, M. J., Nitish, D., Akash, G., Sreevidya, N., & Shaik, S. (2023). Machine Learning Approach for House Price Prediction. Asian Journal of Research in Computer Science, 16(2), 54-61. DOI: https://doi.org/10.9734/ajrcos/2023/v16i2339

Rawool, A. G., Rogye, D. V., Rane, S. G., & Bharadi, V. A. (2021). House Price Prediction Using Machine Learning.IRE Journals, 4(11), 29-33.

Joshi, H., & Swarndeep, S. (2022). A Comparative Study on House Price Prediction using Machine Learning.International Research Journal of Engineering and Technology (IRJET), 9(11), 782-787.

Aghav, V., Avhad, D., Nanaware, S., Gudekar, R., & Pawar, M. (2023). House Price Prediction Using Machine Learning. International Research Journal of Modernization in Engineering Technology and Science, 5(3), 3756-3760. https://doi.org/10.56726/IRJMETS35094 . DOI: https://doi.org/10.56726/IRJMETS35094

Sisman, Y., & Sisman, A. (2016). Principal Component Analysis Approach in the Determination of House Value.Ponte Multidisciplinary Journal of Sciences and Research,72(3), 19-28. https://doi.org/10.21506/j.ponte.2016.3.23 . DOI: https://doi.org/10.21506/j.ponte.2016.3.23

Mora-Garcia, R. T., Cespedes-Lopez, M.F., & Perez-Sanchez, V.R. (2022). Housing Price Prediction Using Machine Learning Algorithms in COVID-19 Times. Land, 11(2100), 22-32. DOI: https://doi.org/10.3390/land11112100

Bali, K. K., & Vashistha, R. (2023, March). House Rent Prediction Using Machine Learning Algorithms – A Methodical Review. Journal of Emerging Technologies and Innovative Research, 10(3), 112-116.

Abdulsalam, M. H., Thuraiya, M., Masrom, S., Johari, N., & Mohamad Saraf, M. H. (2022). Machine learning algorithms on price and rent predictions in real estate: A systematic literature review. Virtual Go Green: Conference and Publication (v-Gogreen 2021) Rethinking Built Environment: Towards a Sustainable Future, 29-30

Renigier-Bilozor, M., Janowski, A., & Walacik, M. (2019). Geoscience Methods in Real Estate Market Analyses: Subjectivity Decrease. Geosciences, 9(3), 130. https://doi.org/10.3390/geosciences9030130 . DOI: https://doi.org/10.3390/geosciences9030130

Oyedeji, J. O., Oshodi, O. S., & Oloke, O. C. (2018). Property Rental Value Classification Model: A Case of Osogbo, Osun State, Nigeria. Covenant Journal of Research in the Built Environment (CJRBE), 6(1), 52-64.

Mathotaarachchi, K. V., Hasan, R., & Mahmood, S. (2024). Advanced Machine Learning Techniques for Predictive Modeling of Property Prices. Information, 15(6), 295. https://doi.org/10.3390/info15060295 . DOI: https://doi.org/10.3390/info15060295

Kalidass, J., Dharshalini, T., Nivetha, R., & Subasri, A. (2024). House Price Prediction Using Machine Learning. International Research Journal of Engineering and Technology (IRJET), 11(4), 1351-1358.

Dabreo, S., Rodrigues, S., Rodrigues, V., & Shah, P. (2021). Real Estate Price Prediction. International Journal of Engineering Research & Technology (IJERT), 10(4), 644-649.

Mouna, L. E., Silkan, H., Haynf, Y., Nann, M. F., & Tekouabou, S. C. K. (2023). A Comparative Study of Urban House Price Prediction using Machine Learning Algorithms. E3S Web of Conferences, 418, 03001. https://doi.org/10.1051/e3sconf/202341803001 . DOI: https://doi.org/10.1051/e3sconf/202341803001

Choy, L. H. T., & Ho, W. K. O. (2023). The Use of Machine Learning in Real Estate Research. Land, 12(4), 740. https://doi.org/10.3390/land12040740 . DOI: https://doi.org/10.3390/land12040740

Raykov, T., & Marcoulides, G. A. (2006). A first course in structural equation modeling (2nd ed.). Lawrence Erlbaum Associates, Inc.