Comparative Modelling, Sensitivity Analysis and Thermodynamics Study of the Adsorption Characteristics of Dried Nauclea latifolia Medicinal Leaves

Main Article Content

Abiola John Adeyi

Abstract

The adsorption characteristics of Nauclea latifolia medicinal leaves were examined across selected temperatures (30–50°C) and water activity levels (0.044–0.900) to assess its storage stability. Both univariate semi-empirical and multivariate statistical models were comparatively employed to represent and predict the observed adsorption characteristics. Additionally, sensitivity analysis was conducted to evaluate the dependence of the adsorption characteristics (that is, equilibrium moisture content (EMC (g/g d.b.)) on temperature and water activity storage factors. The net isosteric heat and entropy of adsorption were also determined alongside compensation theory values. The results indicated that EMC decreased with increasing temperature and increased with rising water activity. The minimum and maximum EMC values of 0.015 and 0.221 g/g d.b. were observed at 50°C. The safe moisture content for storing dried Nauclea latifolia medicinal leaves was 12.6 (g/g d.b.) at 30 to 40 °C and 9 (g/g d.b.) at 50°C. Amongst the models tested, the Peleg model demonstrated best performance, with its R² values ranging from 0.9897 to 0.994 and RMSE values between 0.0039 and 0.0129. Sensitivity analysis revealed that EMC is more sensitive to water activity than to temperature. The net isosteric heat and entropy of adsorption decreased with increasing EMC, indicating that the process was enthalpy-driven. In conclusion, the findings underscore the importance of environmental management in maintaining the storage properties of Nauclea latifolia medicinal leaves. The results of the models are useful in guiding the optimal storage conditions and the design of tailored storage facilities for Nauclea latifolia medicinal leaves.

Article Details

How to Cite
[1]
A. J. Adeyi, “Comparative Modelling, Sensitivity Analysis and Thermodynamics Study of the Adsorption Characteristics of Dried Nauclea latifolia Medicinal Leaves ”, AJERD, vol. 7, no. 2, pp. 152-162, Aug. 2024.
Section
Articles

References

[1] Iheagwam, F.N., Israel, N., Kayode, K.O., DeCampos, O.C., Ogunlana, O.O, & Chinedu, S.N. (2020). Nauclea latifolia Sm. Leaf Extracts Extenuates Free Radicals, Inflammation, and Diabetes-Linked Enzymes. Oxidative Medicine and Cellular Longevity. 9 (2020), 1 - 13 Doi: 10.1155/2020/5612486.
[2] Balogun, M.E., Besong, E.E., Obu, D.C., Obu, M.S.U., & Djobissie, S.F.A. (2016). Nauclea latifolia: A Medicinal, Economic and Pharmacological Review. International Journal of Plant Research, 6(2), 34-52. DOI: 10.5923/j.plant.20160602.03
[3] Ademola, I.O., Fagbemi, B.O. & Idowu S.O., (2007). Anthelmintic efficacy of Nauclea latifolia extract against gastrointestinal nematodes of sheep: in vitro and in vivo studies. Afr. J. Trad. 4(2), 148 – 156.
[4] Ajayi, O.S., Aderogba, M.A., Akinkunmi, E.O., Obuotor, E.M., & Majinda, R.R.T. (2020). Bioactive compounds from Nauclea latifolia leaf extracts. Journal of King Saud University, 32(4), 2419 - 2425. DOI: 10.1016/j.jksus.2020.03.031
[5] Okonkwo, C.E., Olaniran, A.F, Adeyi, O., Adeyi, A.J., Ojediran, J.O., Adewumi, A.D., Iranloye, Y.M. & Erinle, O.C. (2021). Drying characteristics of fermented – cooked cassava chips used in the production of complementary foods: Mathematical and Gaussian process regression modeling approach. Journal of Food Process Engineering. 44(1), 1 – 14. https://doi.org/10.1111/jfpe.13715.
[6] Sridhar, A., Ponnuchamy. M., Kapoor, A., & Prabhakar, S. (2022). Valorization of food waste as adsorbents for toxic dye removal from contaminated waters: A review. Journal of Hazardous Materials 424(Pt B):127432. DOI: 10.1016/j.jhazmat.2021.127432.
[7] Onuoha, J. N., & Abu, J. O. (2021). Moisture Adsorption potentials and energy models of Gongronema latifolium leaf grits. Food Science & Nutrition, 9(12), 6142–6153. https://doi.org/10.1002/fsn3.2616
[8] Rahman, S., & Kalapathy, U. (2018). A case study on water activity and moisture sorption isotherm of food products. Emerging Technologies in Food Science. 34 (2). 25–45. https://doi.org/10.1007/978-981-13-2324-5_2
[9] Silva, A. C., Maia, G. A., & Nascimento, R. S. (2019). Moisture sorption isotherm and shelf life prediction. Journal of Food Engineering, 264 (3), 109–115. https://doi.org/10.1016/j.jfoodeng.2019.04.009
[10] Ruan, J., Li M., Liu Y., Ye B., & Ling C. (2022). Adsorption isotherm and thermodynamic properties of microwave vacuum dried tilapia fillets. LWT - Food Science and Technology 166(2022), 113766. https://doi.org/10.1016/j.lwt.2022.113766.
[11] Zhou, Y., Song, Y., & Yang, L. (2023). Investigating Adsorption-Based Atmospheric Water. Sustainability, 14(19), 12582. https://doi.org/10.3390/su141912582.
[12] Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2004). The concept of validity. Psychological Review, 111(4), 1061–1071. https://doi.org/10.1037/0033-295X.111.4.1061.
[13] Oyelade, O.J., Tunde-Akintunde T.Y., Igbeka J.C., Oke, M.O., & Raji O.Y. (2008). Modelling moisture sorption isotherms for maize flour. 44(2), 179–185. doi:10.1016/j.jspr.2007.10.005
[14] Vasileva, A., Durakova A., Petrova T., & Choroleeva K. (2024). Moisture sorption characteristics of white mulberry (Morus alba) as a natural alternative to sugar. Journal of Hygienic Engineering and Design. 39(1), 1 – 10.
[15] Sobowale, S.S., Oke M.O., Odunmbaku L.A. & Adebo O.A. (2017). Equilibrium sorption isotherms of Moringa oleifera leaves at different temperatures.. African Journal of Science, Technology, Innovation and Development, 9(1), 61–68. doi:10.1080/20421338.2016.1263435.
[16] Heras, M.R., Heredia, A., Castelló, M.L., & Andrés, A. (2014). Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Bioscience, 7(2), 88–94. doi:10.1016/j.fbio.2014.06.002
[17] Sohil, F., Sohali, M.U., & Shabbir, J. (2021). An introduction to statistical learning with applications in R. Statistical Theory and Related Fields, 6(1), 87–87. https://doi.org/10.1080/24754269.2021.1980261
[18] Venables, W.N., Ripley, & B.D.. (2002). [Statistics and Computing] Modern Applied Statistics with S., Fourth Edition. doi:10.1007/978-0-387-21706-2
[19] Ouafa, N., Moghrani, H., Benaouada, N., Yassaa, N., Maachi, R., & Younsi, R. (2015). Moisture Sorption Isotherms and Heat of Sorption of Algerian Bay Leaves (Laurus nobilis). Maderas. Ciencia y tecnología 17(4), 759 – 772. DOI:10.4067/S0718-221X2015005000066.
[20] Zeitler, D.W. (2015). Applied Multivariate Statistics with R. Journal of Statistical Software. 1St Edition. Doi: 10.18637/jss.v071.b02
[21] Fabrigar, L.R., Wegener, D.T., MacCallum, R.C., & Preacher, K.J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(2), 272-280. doi:10.1037/1082-989x.4.3.272
[22] Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2002). Applied multiple regression/correlation analysis for the behavioral sciences . 3rd Edition. https://doi.org/10.4324/9780203774441
[23] Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2019). Multivariate data analysis. 8th Edition. Pearson Education
[24] Adewale, O.O., Afam, I.O.J., & Patrick, F.K. (2015). Drying Kinetics of Banana (Musa spp.), Inerciarcia 40(6), 374-380.
[25] Adeyi, A.J., Adeyi, O., Oke, E.O., Okonkwo, C.E & Ogunsola, A.D. (2021). Effective moisture diffusivity of Sierrathrissa leonensis cracker: optimization, sensitivity and uncertainty analyses. Scientific African 12(1), 1 – 9. https://doi.org/10.1016/j.sciaf.2021.e00807.
[26] Akoy, E.O.M., & von Hörsten, D. (2013). Moisture sorption isotherms of mango slices. International Journal of Agricultural and Food Science.
[27] Kane, C.S.E, Kouhila, M., Lamharrar, A., Idlimam, A. & Mimet, A. (2008). Moisture sorption isotherms and thermodynamic properties of tow mints: Mentha pulegium and Mentha rotundifolia. Journal of Renewable Energies 11(2). 75 – 89. DOI: 10.54966/jreen.v11i2.67.
[28] Yu, L., Na, L., Wenjiang, W., & Chunyan, H. (2016). Research on adsorption isotherms and the net isosteric heat of dried products of Benincasa hispida, 06 Journal of Light Industry, 31(1), 24–30.
[29] Zhang, Z, Li, X., Jia, H, & Liu, Y. (2022). Moisture sorption isotherms and thermodynamic properties of tiger nuts: An oil-rich tuber. Food Science and Technology. 167. https://doi.org/10.1016/j.lwt.2022.113866.