Comparative Modelling, Sensitivity Analysis and Thermodynamics Study of the Adsorption Characteristics of Dried Nauclea latifolia Medicinal Leaves
Main Article Content
Abstract
The adsorption characteristics of Nauclea latifolia medicinal leaves were examined across selected temperatures (30–50°C) and water activity levels (0.044–0.900) to assess its storage stability. Both univariate semi-empirical and multivariate statistical models were comparatively employed to represent and predict the observed adsorption characteristics. Additionally, sensitivity analysis was conducted to evaluate the dependence of the adsorption characteristics (that is, equilibrium moisture content (EMC (g/g d.b.)) on temperature and water activity storage factors. The net isosteric heat and entropy of adsorption were also determined alongside compensation theory values. The results indicated that EMC decreased with increasing temperature and increased with rising water activity. The minimum and maximum EMC values of 0.015 and 0.221 g/g d.b. were observed at 50°C. The safe moisture content for storing dried Nauclea latifolia medicinal leaves was 12.6 (g/g d.b.) at 30 to 40 °C and 9 (g/g d.b.) at 50°C. Amongst the models tested, the Peleg model demonstrated best performance, with its R² values ranging from 0.9897 to 0.994 and RMSE values between 0.0039 and 0.0129. Sensitivity analysis revealed that EMC is more sensitive to water activity than to temperature. The net isosteric heat and entropy of adsorption decreased with increasing EMC, indicating that the process was enthalpy-driven. In conclusion, the findings underscore the importance of environmental management in maintaining the storage properties of Nauclea latifolia medicinal leaves. The results of the models are useful in guiding the optimal storage conditions and the design of tailored storage facilities for Nauclea latifolia medicinal leaves.
Article Details
References
Iheagwam, F.N., Israel, N., Kayode, K.O., DeCampos, O.C., Ogunlana, O.O, & Chinedu, S.N. (2020). Nauclea latifolia Sm. Leaf Extracts Extenuates Free Radicals, Inflammation, and Diabetes-Linked Enzymes. Oxidative Medicine and Cellular Longevity. 9 (2020), 1 - 13 Doi: 10.1155/2020/5612486. DOI: https://doi.org/10.1155/2020/5612486
Balogun, M.E., Besong, E.E., Obu, D.C., Obu, M.S.U., & Djobissie, S.F.A. (2016). Nauclea latifolia: A Medicinal, Economic and Pharmacological Review. International Journal of Plant Research, 6(2), 34-52. DOI: 10.5923/j.plant.20160602.03
Ademola, I.O., Fagbemi, B.O. & Idowu S.O., (2007). Anthelmintic efficacy of Nauclea latifolia extract against gastrointestinal nematodes of sheep: in vitro and in vivo studies. Afr. J. Trad. 4(2), 148 – 156. DOI: https://doi.org/10.4314/ajtcam.v4i2.31202
Ajayi, O.S., Aderogba, M.A., Akinkunmi, E.O., Obuotor, E.M., & Majinda, R.R.T. (2020). Bioactive compounds from Nauclea latifolia leaf extracts. Journal of King Saud University, 32(4), 2419 - 2425. DOI: 10.1016/j.jksus.2020.03.031 DOI: https://doi.org/10.1016/j.jksus.2020.03.031
Okonkwo, C.E., Olaniran, A.F, Adeyi, O., Adeyi, A.J., Ojediran, J.O., Adewumi, A.D., Iranloye, Y.M. & Erinle, O.C. (2021). Drying characteristics of fermented – cooked cassava chips used in the production of complementary foods: Mathematical and Gaussian process regression modeling approach. Journal of Food Process Engineering. 44(1), 1 – 14. https://doi.org/10.1111/jfpe.13715. DOI: https://doi.org/10.1111/jfpe.13715
Sridhar, A., Ponnuchamy. M., Kapoor, A., & Prabhakar, S. (2022). Valorization of food waste as adsorbents for toxic dye removal from contaminated waters: A review. Journal of Hazardous Materials 424(Pt B):127432. DOI: 10.1016/j.jhazmat.2021.127432. DOI: https://doi.org/10.1016/j.jhazmat.2021.127432
Onuoha, J. N., & Abu, J. O. (2021). Moisture Adsorption potentials and energy models of Gongronema latifolium leaf grits. Food Science & Nutrition, 9(12), 6142–6153. https://doi.org/10.1002/fsn3.2616 DOI: https://doi.org/10.1002/fsn3.2616
Rahman, S., & Kalapathy, U. (2018). A case study on water activity and moisture sorption isotherm of food products. Emerging Technologies in Food Science. 34 (2). 25–45. https://doi.org/10.1007/978-981-13-2324-5_2
Silva, A. C., Maia, G. A., & Nascimento, R. S. (2019). Moisture sorption isotherm and shelf life prediction. Journal of Food Engineering, 264 (3), 109–115. https://doi.org/10.1016/j.jfoodeng.2019.04.009 DOI: https://doi.org/10.1016/j.jfoodeng.2019.04.009
Ruan, J., Li M., Liu Y., Ye B., & Ling C. (2022). Adsorption isotherm and thermodynamic properties of microwave vacuum dried tilapia fillets. LWT - Food Science and Technology 166(2022), 113766. https://doi.org/10.1016/j.lwt.2022.113766. DOI: https://doi.org/10.1016/j.lwt.2022.113766
Zhou, Y., Song, Y., & Yang, L. (2023). Investigating Adsorption-Based Atmospheric Water. Sustainability, 14(19), 12582. https://doi.org/10.3390/su141912582. DOI: https://doi.org/10.3390/su141912582
Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2004). The concept of validity. Psychological Review, 111(4), 1061–1071. https://doi.org/10.1037/0033-295X.111.4.1061. DOI: https://doi.org/10.1037/0033-295X.111.4.1061
Oyelade, O.J., Tunde-Akintunde T.Y., Igbeka J.C., Oke, M.O., & Raji O.Y. (2008). Modelling moisture sorption isotherms for maize flour. 44(2), 179–185. doi:10.1016/j.jspr.2007.10.005 DOI: https://doi.org/10.1016/j.jspr.2007.10.005
Vasileva, A., Durakova A., Petrova T., & Choroleeva K. (2024). Moisture sorption characteristics of white mulberry (Morus alba) as a natural alternative to sugar. Journal of Hygienic Engineering and Design. 39(1), 1 – 10.
Sobowale, S.S., Oke M.O., Odunmbaku L.A. & Adebo O.A. (2017). Equilibrium sorption isotherms of Moringa oleifera leaves at different temperatures.. African Journal of Science, Technology, Innovation and Development, 9(1), 61–68. doi:10.1080/20421338.2016.1263435. DOI: https://doi.org/10.1080/20421338.2016.1263435
Heras, M.R., Heredia, A., Castelló, M.L., & Andrés, A. (2014). Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Bioscience, 7(2), 88–94. doi:10.1016/j.fbio.2014.06.002 DOI: https://doi.org/10.1016/j.fbio.2014.06.002
Sohil, F., Sohali, M.U., & Shabbir, J. (2021). An introduction to statistical learning with applications in R. Statistical Theory and Related Fields, 6(1), 87–87. https://doi.org/10.1080/24754269.2021.1980261 DOI: https://doi.org/10.1080/24754269.2021.1980261
Venables, W.N., Ripley, & B.D.. (2002). [Statistics and Computing] Modern Applied Statistics with S., Fourth Edition. doi:10.1007/978-0-387-21706-2 DOI: https://doi.org/10.1007/978-0-387-21706-2
Ouafa, N., Moghrani, H., Benaouada, N., Yassaa, N., Maachi, R., & Younsi, R. (2015). Moisture Sorption Isotherms and Heat of Sorption of Algerian Bay Leaves (Laurus nobilis). Maderas. Ciencia y tecnología 17(4), 759 – 772. DOI:10.4067/S0718-221X2015005000066. DOI: https://doi.org/10.4067/S0718-221X2015005000066
Zeitler, D.W. (2015). Applied Multivariate Statistics with R. Journal of Statistical Software. 1St Edition. Doi: 10.18637/jss.v071.b02 DOI: https://doi.org/10.18637/jss.v071.b02
Fabrigar, L.R., Wegener, D.T., MacCallum, R.C., & Preacher, K.J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(2), 272-280. doi:10.1037/1082-989x.4.3.272 DOI: https://doi.org/10.1037//1082-989X.4.3.272
Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2002). Applied multiple regression/correlation analysis for the behavioral sciences . 3rd Edition. https://doi.org/10.4324/9780203774441 DOI: https://doi.org/10.4324/9780203774441
Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2019). Multivariate data analysis. 8th Edition. Pearson Education
Adewale, O.O., Afam, I.O.J., & Patrick, F.K. (2015). Drying Kinetics of Banana (Musa spp.), Inerciarcia 40(6), 374-380.
Adeyi, A.J., Adeyi, O., Oke, E.O., Okonkwo, C.E & Ogunsola, A.D. (2021). Effective moisture diffusivity of Sierrathrissa leonensis cracker: optimization, sensitivity and uncertainty analyses. Scientific African 12(1), 1 – 9. https://doi.org/10.1016/j.sciaf.2021.e00807. DOI: https://doi.org/10.1016/j.sciaf.2021.e00807
Akoy, E.O.M., & von Hörsten, D. (2013). Moisture sorption isotherms of mango slices. International Journal of Agricultural and Food Science.
Kane, C.S.E, Kouhila, M., Lamharrar, A., Idlimam, A. & Mimet, A. (2008). Moisture sorption isotherms and thermodynamic properties of tow mints: Mentha pulegium and Mentha rotundifolia. Journal of Renewable Energies 11(2). 75 – 89. DOI: 10.54966/jreen.v11i2.67. DOI: https://doi.org/10.54966/jreen.v11i2.67
Yu, L., Na, L., Wenjiang, W., & Chunyan, H. (2016). Research on adsorption isotherms and the net isosteric heat of dried products of Benincasa hispida, 06 Journal of Light Industry, 31(1), 24–30.
Zhang, Z, Li, X., Jia, H, & Liu, Y. (2022). Moisture sorption isotherms and thermodynamic properties of tiger nuts: An oil-rich tuber. Food Science and Technology. 167. https://doi.org/10.1016/j.lwt.2022.113866. DOI: https://doi.org/10.1016/j.lwt.2022.113866