Mechanical and Water Barrier Properties of Inhomogeneous Clay Nano-Particles Reinforced Thermoplastic Starch
Main Article Content
Abstract
This research investigated the development of biodegradable bioplastic as a possible replacement for petroleum-based plastics, which constitute a serious environmental hazard. These hazards include but are not limited to flooding resulting from blocked sewage and danger to aquatic life in marine environments. The solution casting method was used to blend inhomogeneous kaolinite clay nano-particles with distilled water, starch, dilute acetic and nitric acids to produce different compositions of thermoplastic starch (TPS)/Clay composites with clay reinforcements ranging from 2.5 to 10 wt.%. The composites were characterized using an X-ray diffraction (XRD), and the mechanical and water absorption properties were determined. The result revealed a 9-fold improvement in the tensile strength (0.72 MPa), flexural strength increased 5-fold (3.34 MPa), and hardness increased 2-fold (23.56 HVN) as well as a reduction in water absorption by 3-fold (6.63%) when compared to the control. Furthermore, the 10 wt.% clay content composite showed the highest mechanical properties. The significant improvement in the listed properties was attributed to a reduction in crystallinity and the formation of new chemical bonds between the thermoplastic starch and the nano-clay. It was observed that the properties of the composites can be further enhanced if a synchronized machine blender (such as an extruder) is employed.
Article Details
References
Zarski, A., Bajer. K. & Kapusniak, J. (2021). Review of the most important methods of improving the processing properties of starch toward non-food applications, Polymers, 13(50), 832-865 DOI: https://doi.org/10.3390/polym13050832
Mohammadi, N. A., Moradpour, M., Saeidi, M. & Alias, A. (2013). Thermoplastic starches: Properties, challenges, and prospects, Starch Stärke, 65(1), 61–72. DOI: https://doi.org/10.1002/star.201200201
Narancic, T., Cerrone, F., Beagan, N. & O’Connor, K (2020). Recent advances in bioplastics: Application and biodegradation, Polymers, 12(4), 920-958 DOI: https://doi.org/10.3390/polym12040920
Vazquez, A., Cyras, V., Alvarez, V. & Moran. J. (2012). Starch/clay nano-biocomposites. Environmental silicate nano-biocomposites, Green Energy and Technology, 50(1), 287-321 DOI: https://doi.org/10.1007/978-1-4471-4108-2_11
Diyana, Z., Jumaidin, R., Selamat, M., Ghazali, I., Julmohammad, N., Huda, N. & Ilyas, R. (2021). Physical properties of thermoplastic starch derived from natural resources and its blends: A review, Polymers, 13(9), 1396-1416. DOI: https://doi.org/10.3390/polym13091396
Sanyang, M., Sapuan, S., Jawaid, M., Ishak. M. & Sahari. J. (2015). Effect of plasticizer type and concentration on dynamic mechanical properties of sugar palm starch–based films, International Journal of Polymer Analysis and Characterization, 20(7), 627–636 DOI: https://doi.org/10.1080/1023666X.2015.1054107
Abera, G., Woldeyes, B., Demash, H., & Miyake, G. (2020). The effect of plasticizers on thermoplastic starch films developed from the indigenous Ethiopian tuber crop Anchote (Coccinia abyssinica) starch, International Journal of Biological Macromolecules, 155(1), 581–587
Janssen. P. & Moscicki. L. (2006). Thermoplastic starch as packaging material, Acta Scientiarum Polonorum Technica Agraria, 5(1), 19-25 DOI: https://doi.org/10.24326/aspta.2006.1.2
Hasanul, B., Abu-Bin H., S. & Abu-Bin, I. (2020). Effects of plasticizers and clays on the physical, chemical mechanical, thermal and morphological properties of potato starch-based nanocomposite films, ACS Omega, 5(28), 17543-17552 DOI: https://doi.org/10.1021/acsomega.0c02012
Colnik, M., Mavrevci, M., Skerget, M. & Knez, Z (2020). Biodegradable polymers, current trends of research and their applications, a review, Chemical Industry and Chemical Engineering Quarterly, 26(4), 401-418 DOI: https://doi.org/10.2298/CICEQ191210018C
Moghaddam, M., Razavi, S. & Jahani, Y (2018) Effects of compatibilizer and thermoplastic starch (TPS) concentration on morphological, rheological, tensile thermal and moisture sorption properties of plasticized polylactic acid/TPS blends, Journal of Polymers and the Environment, 26(1), 3202-3215. DOI: https://doi.org/10.1007/s10924-018-1206-7
Stylianou, M., Inglezakis, V., Agapiou, A., Itskos, G., Jetybayeva, A. & Loizidou, M. (2018). A comparative study on phyllosilicate and tectosilicate mineral structural properties, Desalination and Water Treatment, 112(1), 119-146 DOI: https://doi.org/10.5004/dwt.2018.21968
Surendren, A., Moharty, A,. Liu, Q. & Misra, M. (2022). A review of biodegradable thermoplastic starches, their blends and composites: Recent developments and opportunities for single-use plastic packaging alternatives, Green Chemistry, 24, 8606-8636. DOI: https://doi.org/10.1039/D2GC02169B
Ren, J., Dang, K. & Pollet, E. (2018). Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: effect of plasticizer nature and nano clay content, Polymers, 10(8), 808-823. DOI: https://doi.org/10.3390/polym10080808
Fekete, E., Angyal, L. & Csiszar, E (2022). The effect of surface characteristics of clays on the properties of starch nanocomposites, Materials, 15(21), 7627-7641 DOI: https://doi.org/10.3390/ma15217627
Alikarami, N., Abrisham, M., Huang, X., Panahi-Samad, M., Zhang, K., Dong. K. & Xiao, X. (2022). Compatibilization of PLA grafted maleic anhydrate through blending of thermoplastic starch (TPS) and nanoclay nanocomposites for the reduction of gas permeability, International Journal of Smart and Nano Materials, 13(1),130-151. DOI: https://doi.org/10.1080/19475411.2022.2051639
Zhang, R., Wang, X., & Chang. M. (2018). Preparation and characterization of potato starch film with various size of nano-SiO2, Polymers, 10(10), 1172-1188. DOI: https://doi.org/10.3390/polym10101172
Kwasniewska, A., Swietlicki, M., Proszynski, A. & Gladyszewski, G (2021). The quantitative nanomechanical mapping of starch/kaolin films surfaces by peak force atomic force microscope (AFM), Polymers 13(2),244 -255. DOI: https://doi.org/10.3390/polym13020244
Calambas, H., Fonseca. A., Adames, D., Aguirre-Loredo, Y. & Caicedo, C. (2021). Physical-mechanical behaviour and water-barrier properties of biopolymers-clay nanocomposites, Molecules, 26(21), 6734 - 6751 DOI: https://doi.org/10.3390/molecules26216734
Aouadi, N., Hellati, A., Cherupurakal, N., Guessoum, M., Mourad, A. (2021). Investigation of mechanical properties and biodegradability of compatibilized thermoplastic starch/high impact polystyrene blends reinforced by organophilic montmorillonite, Polymers and Polymer Composites, 29(9), 1113-1124 DOI: https://doi.org/10.1177/09673911211046803
Behera, A. K. (2018). Mechanical and biodegradation analysis of thermoplastic starch reinforced nanobiocomposites. IOP Conference Series, Materials Science and Engineering, 410(1),012001-012008. DOI: https://doi.org/10.1088/1757-899X/410/1/012001
Wang, W., Zhang, H., Jia, R., Dai, Y., Dong, H., Hou, H. & Guo, Q (2018). High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films, Food Hydrocolloids, (79),534-543. DOI: https://doi.org/10.1016/j.foodhyd.2017.12.013
Pramod, G., Tanmay, C,. Preksha, J., Teena, K., Ankur, T., Tushar, K. & Vivek, N. (2018). Homemade bioplastic, International Journal of Advance Research in Science and Engineering, 3(7), 526-529
Demash, H., & Miyake, G. (2020). The effect of plasticizers on thermoplastic starch films developed from the indigenous Ethiopian tuber crop Anchote (Coccinia abyssinica) starch, International Journal of Biological Macromolecules, 155(1), 581–587. DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.218
Wang, S. & Copeland, L. (2015) Effect of Acid Hydrolysis on Starch Structure and Functionality: A Review, Critical Reviews in Food Science and Nutrition, 55(8), 1081-1097. DOI: https://doi.org/10.1080/10408398.2012.684551