Mechanical and Water Barrier Properties of Inhomogeneous Clay Nano-Particles Reinforced Thermoplastic Starch

Main Article Content

Stephen Emeka Ochei
Johnson Olumuyiwa Agunsoye
Henry Ekene Mgbemere
Kolawole Dayo Alonge

Abstract

This research investigated the development of biodegradable bioplastic as a possible replacement for petroleum-based plastics, which constitute a serious environmental hazard. These hazards include but are not limited to flooding resulting from blocked sewage and danger to aquatic life in marine environments. The solution casting method was used to blend inhomogeneous kaolinite clay nano-particles with distilled water, starch, dilute acetic and nitric acids to produce different compositions of thermoplastic starch (TPS)/Clay composites with clay reinforcements ranging from 2.5 to 10 wt.%.  The composites were characterized using an X-ray diffraction (XRD), and the mechanical and water absorption properties were determined. The result revealed a 9-fold improvement in the tensile strength (0.72 MPa), flexural strength increased 5-fold (3.34 MPa), and hardness increased 2-fold (23.56 HVN) as well as a reduction in water absorption by 3-fold (6.63%) when compared to the control. Furthermore, the 10 wt.% clay content composite showed the highest mechanical properties. The significant improvement in the listed properties was attributed to a reduction in crystallinity and the formation of new chemical bonds between the thermoplastic starch and the nano-clay. It was observed that the properties of the composites can be further enhanced if a synchronized machine blender (such as an extruder) is employed.

Article Details

How to Cite
[1]
S. E. Ochei, J. O. Agunsoye, H. E. Mgbemere, and K. D. Alonge, “Mechanical and Water Barrier Properties of Inhomogeneous Clay Nano-Particles Reinforced Thermoplastic Starch”, AJERD, vol. 7, no. 1, pp. 160–168, May 2024.
Section
Articles

References

Zarski, A., Bajer. K. & Kapusniak, J. (2021). Review of the most important methods of improving the processing properties of starch toward non-food applications, Polymers, 13(50), 832-865 DOI: https://doi.org/10.3390/polym13050832

Mohammadi, N. A., Moradpour, M., Saeidi, M. & Alias, A. (2013). Thermoplastic starches: Properties, challenges, and prospects, Starch Stärke, 65(1), 61–72. DOI: https://doi.org/10.1002/star.201200201

Narancic, T., Cerrone, F., Beagan, N. & O’Connor, K (2020). Recent advances in bioplastics: Application and biodegradation, Polymers, 12(4), 920-958 DOI: https://doi.org/10.3390/polym12040920

Vazquez, A., Cyras, V., Alvarez, V. & Moran. J. (2012). Starch/clay nano-biocomposites. Environmental silicate nano-biocomposites, Green Energy and Technology, 50(1), 287-321 DOI: https://doi.org/10.1007/978-1-4471-4108-2_11

Diyana, Z., Jumaidin, R., Selamat, M., Ghazali, I., Julmohammad, N., Huda, N. & Ilyas, R. (2021). Physical properties of thermoplastic starch derived from natural resources and its blends: A review, Polymers, 13(9), 1396-1416. DOI: https://doi.org/10.3390/polym13091396

Sanyang, M., Sapuan, S., Jawaid, M., Ishak. M. & Sahari. J. (2015). Effect of plasticizer type and concentration on dynamic mechanical properties of sugar palm starch–based films, International Journal of Polymer Analysis and Characterization, 20(7), 627–636 DOI: https://doi.org/10.1080/1023666X.2015.1054107

Abera, G., Woldeyes, B., Demash, H., & Miyake, G. (2020). The effect of plasticizers on thermoplastic starch films developed from the indigenous Ethiopian tuber crop Anchote (Coccinia abyssinica) starch, International Journal of Biological Macromolecules, 155(1), 581–587

Janssen. P. & Moscicki. L. (2006). Thermoplastic starch as packaging material, Acta Scientiarum Polonorum Technica Agraria, 5(1), 19-25 DOI: https://doi.org/10.24326/aspta.2006.1.2

Hasanul, B., Abu-Bin H., S. & Abu-Bin, I. (2020). Effects of plasticizers and clays on the physical, chemical mechanical, thermal and morphological properties of potato starch-based nanocomposite films, ACS Omega, 5(28), 17543-17552 DOI: https://doi.org/10.1021/acsomega.0c02012

Colnik, M., Mavrevci, M., Skerget, M. & Knez, Z (2020). Biodegradable polymers, current trends of research and their applications, a review, Chemical Industry and Chemical Engineering Quarterly, 26(4), 401-418 DOI: https://doi.org/10.2298/CICEQ191210018C

Moghaddam, M., Razavi, S. & Jahani, Y (2018) Effects of compatibilizer and thermoplastic starch (TPS) concentration on morphological, rheological, tensile thermal and moisture sorption properties of plasticized polylactic acid/TPS blends, Journal of Polymers and the Environment, 26(1), 3202-3215. DOI: https://doi.org/10.1007/s10924-018-1206-7

Stylianou, M., Inglezakis, V., Agapiou, A., Itskos, G., Jetybayeva, A. & Loizidou, M. (2018). A comparative study on phyllosilicate and tectosilicate mineral structural properties, Desalination and Water Treatment, 112(1), 119-146 DOI: https://doi.org/10.5004/dwt.2018.21968

Surendren, A., Moharty, A,. Liu, Q. & Misra, M. (2022). A review of biodegradable thermoplastic starches, their blends and composites: Recent developments and opportunities for single-use plastic packaging alternatives, Green Chemistry, 24, 8606-8636. DOI: https://doi.org/10.1039/D2GC02169B

Ren, J., Dang, K. & Pollet, E. (2018). Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: effect of plasticizer nature and nano clay content, Polymers, 10(8), 808-823. DOI: https://doi.org/10.3390/polym10080808

Fekete, E., Angyal, L. & Csiszar, E (2022). The effect of surface characteristics of clays on the properties of starch nanocomposites, Materials, 15(21), 7627-7641 DOI: https://doi.org/10.3390/ma15217627

Alikarami, N., Abrisham, M., Huang, X., Panahi-Samad, M., Zhang, K., Dong. K. & Xiao, X. (2022). Compatibilization of PLA grafted maleic anhydrate through blending of thermoplastic starch (TPS) and nanoclay nanocomposites for the reduction of gas permeability, International Journal of Smart and Nano Materials, 13(1),130-151. DOI: https://doi.org/10.1080/19475411.2022.2051639

Zhang, R., Wang, X., & Chang. M. (2018). Preparation and characterization of potato starch film with various size of nano-SiO2, Polymers, 10(10), 1172-1188. DOI: https://doi.org/10.3390/polym10101172

Kwasniewska, A., Swietlicki, M., Proszynski, A. & Gladyszewski, G (2021). The quantitative nanomechanical mapping of starch/kaolin films surfaces by peak force atomic force microscope (AFM), Polymers 13(2),244 -255. DOI: https://doi.org/10.3390/polym13020244

Calambas, H., Fonseca. A., Adames, D., Aguirre-Loredo, Y. & Caicedo, C. (2021). Physical-mechanical behaviour and water-barrier properties of biopolymers-clay nanocomposites, Molecules, 26(21), 6734 - 6751 DOI: https://doi.org/10.3390/molecules26216734

Aouadi, N., Hellati, A., Cherupurakal, N., Guessoum, M., Mourad, A. (2021). Investigation of mechanical properties and biodegradability of compatibilized thermoplastic starch/high impact polystyrene blends reinforced by organophilic montmorillonite, Polymers and Polymer Composites, 29(9), 1113-1124 DOI: https://doi.org/10.1177/09673911211046803

Behera, A. K. (2018). Mechanical and biodegradation analysis of thermoplastic starch reinforced nanobiocomposites. IOP Conference Series, Materials Science and Engineering, 410(1),012001-012008. DOI: https://doi.org/10.1088/1757-899X/410/1/012001

Wang, W., Zhang, H., Jia, R., Dai, Y., Dong, H., Hou, H. & Guo, Q (2018). High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films, Food Hydrocolloids, (79),534-543. DOI: https://doi.org/10.1016/j.foodhyd.2017.12.013

Pramod, G., Tanmay, C,. Preksha, J., Teena, K., Ankur, T., Tushar, K. & Vivek, N. (2018). Homemade bioplastic, International Journal of Advance Research in Science and Engineering, 3(7), 526-529

Demash, H., & Miyake, G. (2020). The effect of plasticizers on thermoplastic starch films developed from the indigenous Ethiopian tuber crop Anchote (Coccinia abyssinica) starch, International Journal of Biological Macromolecules, 155(1), 581–587. DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.218

Wang, S. & Copeland, L. (2015) Effect of Acid Hydrolysis on Starch Structure and Functionality: A Review, Critical Reviews in Food Science and Nutrition, 55(8), 1081-1097. DOI: https://doi.org/10.1080/10408398.2012.684551

Most read articles by the same author(s)