Comparative Study of the Viscosities and Thermal Conductivities of Groundnut and Coconut Oils Dispersed with Graphene Particles Reinforced with Oleic Acid

Main Article Content

Yusuf Aliyu
Ibrahim Ogu Sadiq
Ahmed Abiola Abdullateef

Abstract

This study addresses some challenges accrued using mineral oil as cutting fluid and suggest alternatives to suitable, eco-friendly, non-toxic and biodegradable solution using vegetable oil. Oils extracted from vegetables are environmentally friendly, biodegradable, and non-toxic compared with mineral oils. To investigate their optimal use for industrial applications, this study tested base oil's thermal-physical properties (kinematic viscosity and thermal conductivity). Temperatures of 400C and 1000C were considered for kinematic viscosity, and it was improved with the infusion of graphene nanoparticles and oleic acid. The thermal conductivities of the base oils at temperatures of 500C, 600C, and 700C were tested against the addition of graphene nanoparticles at the same temperatures with compositions of 0.001%, 0.003%, and 0.005%. Thermal conductivity of the groundnut oil at 50, 60 and 700C were 0.495, 0.320 and 0.225 Wm-1K-1. The average of the compositions at 50, 60 and 700C were 0.527, 0.33 and 0.25 Wm-1K-1. Compare to coconut oil at 50, 60 and 700C were 0.534, 0.318 and 0.214 Wm-1K-1, and the average of the compositions at 50, 60 and 700C were 0.622, 0.36 and 0.24 Wm-1K-1. Kinematic viscosity increments of coconut oil performed better than groundnut oil at 0.001wt% with 400C is 7.15% and 3.68% for groundnut oil. Groundnut edged coconut oil at 0.003wt% at 400C 17.98% and 11.83%. Similarly, with 0.005wt% at 1000C coconut oil improve with 63.70% compare 59.73% of groundnut oil. Groundnut oil has a higher viscosity index than coconut oil without the addition of nano-lubricant 436.3 and 209. With the infusion of nano-lubricant the average viscosity index for groundnut oil is 535.17 compare to 406.25 of the coconut oils. It can be verified that the infusion of graphene nanoparticles in both oils can be deployed in machining applications to reduce the friction between contacting surfaces and dissipate heat from the cutting zone.

Article Details

How to Cite
[1]
Y. Aliyu, I. O. Sadiq, and A. A. AbdulLateef, “Comparative Study of the Viscosities and Thermal Conductivities of Groundnut and Coconut Oils Dispersed with Graphene Particles Reinforced with Oleic Acid”, AJERD, vol. 7, no. 2, pp. 172-181, Aug. 2024.
Section
Articles
Author Biography

Ibrahim Ogu Sadiq, Department of Mechanical Engineering, School of Infrastructure, Process Engineering and Technology, Federal University of Technology Minna, Niger State, Nigeria

Mechanical Engineering and Postgraduate Coordinator

References

[1] Wang, X. M., Li, C. H., Zhang, Y. B., Ali, H. M., Sharma, S., Li, R., Yang, M., Said, Z., & Liu, X. (2022) Tribology of enhanced turning using biolubricants: A comparative assessment, Tribology International, 174(2), 107766, https://doi.org/10.1016/j.trib,oint.2022.107766
[2] Liu, D. W., Li, C. H, Chang, H. L., Dong, L., Aiguo, Q., Zhang, Y. B., Yang, M., Teng. G., Wang, X. M., Liu, M. Z., Xin, C., Ali, H., & Sharma, S. (2022). Kinematics and improved surface roughness model in milling. The International Journal of Advanced Manufacturing Technology. 131(2), 2087–2108 http://dx.doi.org/10.1007/s00170-022-10729-8
[3] Duan, Z. J., Li, C. H., Zhang, Y. B., Yang, M., Teng, G., Xin, L., Li, R., Said, Z., Debnath, S., & Sharma, S. (2023). Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant. Frontiers of Mechanical Engineering, 12(2), 6-16, http://dx.doi.org/10.1007/s11465-022-0720-4,
[4] Liu, M. Z., Li, C. H., Zhang, Y. B., Yang. M., Teng, G., Xin, C., Wang, X. M., Xu, W. H., Zhou, Z. M., Bo, L., Said, Z., Runze, L., & Sharma, S. (2022). Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics. Chinese Journal of Aeronautics. 36(7), 160-193. http://dx.doi.org/10.1016/j.cja.2022.11.005
[5] Liu, M. Z., Li, C. H., Zhang, Y. B., Yang. M., Teng, G., Xin, C., Wang, X. M., Li, H. N., Said, Z., Runze, L., & Sharma, S. (2022). Analysis of grain tribology and improved grinding temperature model based on discrete heat source. Tribology International. 180(4), 9-12, http://dx.doi.org/10.1016/j.triboint.2022.108196
[6] Xu, W. H., Li, C. H., Zhang, Y. B., Ali, H., Sharma, S., Runze, L., Yang, M., Teng, G., Liu, M. Z., Wang, X. M., Said, Z., Xin, L., & Zhou, Z. M., (2022). Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. International Journal of Extreme Manufacturing. 4(4), 1-43 http://dx.doi.org/10.1088/2631-7990/ac9652
[7] Wang, X. M., Li, C. H., Zhang, Y. B., Ding, W. F., Yang, M., Teng, G., Hua, J. C., Xu, X. F., Wang, D. H., Said, Z., Debnath, S., Jamil, M. & Muhammad, H. (2020). Vegetable oil-based nanofluid minimum quantity lubrication turning: Academic review and perspectives. Journal of Manufacturing Processes, 59(2), 76-97 http://dx.doi.org/10.1016/j.jmapro.2020.09.044
[8] Zhang, X., Li, C., Zhou, Z. Bo, L., Zhang, Y. B., Yang, M., Teng, G., Liu, M. Z., Zhang, N., Said, Z., Sharma, S. & Ali, H. (2023). Vegetable Oil-Based Nanolubricants in Machining: From Physicochemical Properties to Application. Chinese Journal of Mechanical Engineering, 36(3), 1-76, https://doi.org/10.1186/s10033-023-00895-5
[9] Onuoha, O.J., Abu, J.O., Lawal, S.A., Mudiare, E. & Adeyemi, M. B. (2016) “Determining the Effect of Cutting Fluids on Surface Roughness in Turning AISI 1330 Alloy Steel using Taguchi Method”. Modern Mechanical Engineering, 06(2), 51-59, http://dx.doi.org/10.4236/mme.2016.62006
[10] Owuna, F. J. (2020). Stability of vegetable-based oils used in the formulation of ecofriendly lubricants – a review, Egyptian Journal of Petroleum, 29(3), 251-256 https://doi.org/10.1016/j.ejpe.2020.09.003
[11] Menezes, P. L., Reeves, C. J., & Lovell, M. R. (2013). Tribology for Scientists and Engineers: From Basics to Advanced Concepts, Springer Science Business Media, New York, 295-333, http://dx.doi.org/10.1007/978-1-4614-1945-7
[12] Woma, T. Y., Lawal, S. A., Abdulrahman, A. S., Olutoye, M. A., & Ojapah, M. M. (2019). Vegetable Oil Based Lubricants: Challenges and Prospects, 14(2), 60-70. http://doi.org/10.2474/trol.14.60
[13] Amina H., & Unnikrishnan, G. (2023) Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges – Review, Renewable and Sustainable Energy Reviews, 182(1), 113-413, https://doi.org/10.1016/j.rser.2023.113413
[14] Chowdhury. M., Mia. M., Kchaou, M., Shuvho, M., & Debanath. U. K. (2020). Friction coefficient and performance evaluation of plain journal bearing using SAE 5W-30 engine oil. Proceedings of the Institution of Mechanical Engineers, Journal of Engineering Tribology, 234(8), 1222-1232. https://doi.org/10.1177/1350650120903927
[15] Ademoh, N. A., Didam, J. H. & Garba, D. K. (2016). Comparative Performance of Neem Seed, Water Melon Seed and Soluble Oils as Metal Cutting Fluids. American Journal of Mechanical Engineering, 4(4), 142-152
[16] Owuna, F. J., Dabai, M. U., Sokoto, M. A., Muhammad, C., & Abubakar, A. L. (2019). Analysis of Blends of Vegetable Oils with Mineral Based Lube Oil, Journal of Scientific Engineering Resources 6(7), 41-48, https://doi.org/10.1016/j.ejpe.2020.09.003
[17] Shafi, W. K., Raina, A., & Haq, M. I. (2018). Friction and wear characteristics of vegetable oils using nanoparticles for sustainable lubrication. Tribology-materials. Surf Interfaces. 12(1), 27-43. https://doi.org/10.1080/17515831.2018.1435343
[18] Banavathu, K. R., Chebattina, K. R. R., Srinivas, V., Moorthy, C. V. K. N. S. N., & Pullagura, G. (2023). Physicochemical and tribological properties of commercial oil - bio-lubricant mixtures dispersed with graphene nanoplatelets. RSC advances, 13(26), 17575-17586. https://doi.org/10.1039/d3ra02689b
[19] Wani K. S., & Charoo, M. S. (2020). An overall review on the tribological, thermal, and rheological properties of nano lubricants, Tribology - Materials, Surfaces & Interfaces, 15(1), 20-54 https://doi.org/10.1080/17515831.2020.1785233
[20] Shahabuddin, M., Mofijur, M., Rizwanul, I. M. F., Kalam, M. A., Masjuki, H. H., Chowdhury, M. A., & Nayem H. (2022). Study on the tribological characteristics of plant oil-based bio-lubricant with automotive liner-piston ring materials, Current Research in Green and Sustainable Chemistry, 5(8), 1-6, https://doi.org/10.1016/j.crgsc.2022.100262
[21] Zulqarnain, A. M., Yusoff, M. H. M., Nazir, M. H., Zahid, I., Ameen, M., Sher, F., Floresyona, D. & Budi. N. E. A. (2021). Comprehensive Review on Oil Extraction and Biodiesel Production Technologies, Sustainability, 13(2), 1-48, https://doi.org/10.3390/su13020788.
[22] Jeevan, T. P. & Jayaram, S. R. (2018) Performance Evaluation of Jatropha and Pongamia Oil Based Environmentally Friendly Cutting Fluids for Turning AA 6061, Advances in Tribology, 5(2), 1–9, http://dx.doi.org/10.1155/2018/2425619.
[23] Aljabiri, N. A. (2018) A Comparative Study of Recycling Used Lubricating Oils using various Methods, Journal of Scientific Engineering Resources, 5(9), 168-177
[24] Owuna, F. J., Dabai, M. U., Sokoto, M. A., Faruq, U. Z., & Abubakar, A. L. (2018). Formulation of Lubricant from Calabash Seed Oil, Journal of Scientific Engineering Resources 3(1), 1–8, http://dx.doi.org/10.9734/jerr/2018/v3i116866
[25] Sadiq, I. O., Suhaimi, M. A., Sharif, S., Mohd Y. N., & Hisam, M. J. (2022). Enhanced performance of bio-lubricant properties with nano-additives for sustainable lubrication. Industrial Lubrication and Tribology, 74(9), 995–1006 https://doi.org/10.1063/5.0051485
[26] Sadiq, I. O., Sharif, S., Suhaimi, M. A., Mohd, Y. N., & AbdRahim, S. Z. (2018). Influence of XGnP as additives on properties of vegetable oil nanolubricant for machining process. AIP Conference Proceedings, Green Design and Manufacture: Advanced and Emerging Applications: Proceedings of the 4th International Conference on Green Design and Manufacture 2030(1), 020085-5 http://dx.doi.org/10.1063/1.5066726
[27] Ismail, S. A. (2023). Study on the viscosity and thermal conductivity of groundnut oil dispersed with graphene reinforced with oleic acid, B. Eng. Thesis, Federal University of Technology, Minna, Nigeria.
[28] Nakamura, M. T., Cheon, Y., Li, Y., & Nara, T. Y. (2004). Mechanisms regulating gene expression by fatty acids. Lipids, 39(11), 1077–1083. https://doi.org/10.1007/S11745-004-1333-0
[29] Hirani, H. (2016). Fundamentals of Engineering Tribology with Applications. Cambridge: Cambridge University Press.
[30] Gulzar, M., Masjuki, H. H., Kalam, M. A., Varman, M., Zulkifli, N. W. M., Mufti, R. A., & Zahid, R. (2016). Tribological performance of nanoparticles as lubricating oil additives, Journal of Nanoparticle Research, 18(8), 1-47, https://doi.org/10.1007/S11051-016-3537-4
[31] Gomes, P., Azeredo, N., Garcia, L., Zambiazi, P., Morselli, G., Ando, R., Otubo, L., Lazar, D., De Souza, R., Rodrigues, D., & Oliveira, N. A. (2022). Layered graphene/hexagonal boron nitride nanosheets (Gr/h-BNNs) applied to the CO2 photoconversion into methanol. Applied Materials Today, 29(2), 1-8, http://dx.doi.org/10.1016/j.apmt.2022.101605
[32] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, N. C. (2008). Superior thermal conductivity of single-layer graphene. ACS Publications, 8(3), 902–907. https://doi.org/10.1021/nl0731872
[33] Kwek D., Crivoi A., & Duan F. (2010) Effects of Temperature and Particle Size on the Thermal Property Measurements of Al2O3−Water Nanofluids. J. Chem. Eng. Data. 55(3), 5690–5695, http://dx.doi.org/10.1021/je1006407
[34] Godson, L., Raja, B., Lal, D. M., & Wongwises, S. (2010) Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid. Exp. Heat Transf. 23(6), 317–332, http://dx.doi.org/10.1080/08916150903564796
[35] Shima P. D., Philip, J. & Raj, B. (2010) Synthesis of Aqueous and Nonaqueous Iron Oxide Nanofluids and Study of Temperature Dependence on Thermal Conductivity and Viscosity. J. Phys. Chem. C. 114(1), 18825–18833, http://dx.doi.org/10.1021/jp107447q
[36] Esfe, M. H., Saedodin, S., Asadi, A., & Karimipour, A. (2015). Thermal conductivity and viscosity of Mg (OH)2-ethylene glycol nanofluids. J. Therm. Anal. Calorim. 120(3), 1145–1149, http://dx.doi.org/10.1007/s10973-015-4417-3
[37] Krishnakumar, T. S., Viswanath, S. P., Varghese, S. M., & Prakash M., J. (2018) Experimental studies on thermal and rheological properties of Al2O3–ethylene glycol nanofluid. Int. J. Refrig. 89(2), 122–130.
[38] Mousavi, S., B. & Heris, S., Z. (2020), “Experimental investigation of ZnO nanoparticles effects on thermophysical and tribological properties of diesel oil”, International Journal of Hydrogen Energy, 45(43), 23603-23614
[39] Wang, Y. N., Wan, Z., Lu, L., Zhang, Z. & Tang, Y. (2018), “Friction and wear mechanisms of castor oil with addition of hexagonal boron nitride nanoparticles”, Tribology International, 124(4), 10-22,
[40] Sharif, M. Z., Azmi, W. H., Redhwan, A. A. M., & Mamat, R. (2016). Investigation of thermal conductivity and viscosity of Al2O3/PAG nanolubricant for application in automotive air conditioning system, International Journal of Refrigeration, 70(16), 93-102, https://doi.org/10.1016/j.ijrefrig.2016.06.025
[41] Azmi, W. H., Sharma, K. V., Mamat, R., Najafi, G., & Mohamad, M., S. (2016b). The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids – A review. Renewable and Sustainable Energy Reviews 53(3), 1046-1058 http://dx.doi.org10.1016/j.rser.2015.09.081