Comparative Assessment of Physico-chemical Characteristics of Balanites aegyptiaca (Desert Date) Biodiesel Blends and Conventional Diesel

Main Article Content

Arhyel Ayuba
Raphael Mailabari Joshua

Abstract

The growing global energy demand and the environmental impact of conventional diesel impose the exploration of sustainable alternatives. This study assesses the physico-chemical properties of Balanites aegyptiaca (desert date) biodiesel blends (B20, B25, and B30) against conventional diesel (B0) and ASTM D6751 standards. Biodiesel was produced via alkali-catalyzed transesterification, achieving an 81.2% yield from seed kernels with 43.5% oil content. Important fuel properties, including density, flash point, kinematic viscosity, pour point, cloud point, and calorific value, were analyzed. The results shows that the blends have a higher density (850–860 kg/m³), elevated flash point (100–110°C), and increased viscosity (3.25–3.60 mm²/s) than diesel (830 kg/m³, 93°C, 2.60 mm²/s), with slightly lower calorific values (42.5–43.8 MJ/kg to 45.4 MJ/kg). While viscosity met ASTM D6751 limits (1.9–6.0 mm²/s), flash points were substandard (<130°C min). Cold-flow properties (pour point: -11.9 to -13.6°C; cloud point: -2 to -8°C) were inferior to diesel (-17°C; -15°C), indicating cold-climate working challenges. The B20 blend demonstrated an optimal balance between fuel properties and renewable content. Balanites aegyptiaca biodiesel is viable for diesel engines but requires additive treatment or blend optimization for cold regions. These findings support sustainable biofuel development in arid zones using non-food feedstocks.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
A. Ayuba and R. M. Joshua, “Comparative Assessment of Physico-chemical Characteristics of Balanites aegyptiaca (Desert Date) Biodiesel Blends and Conventional Diesel”, AJERD, vol. 8, no. 3, pp. 264–270, Nov. 2025.
Section
Articles

References

Ahmed, A., Ali, A., Mubashir, M., Lim, H. R., Khoo, K. S., & Show, P. L. (2023). Process optimization and simulation of biodiesel synthesis from waste cooking oil through supercritical transesterification reaction without catalyst. Physics: Energy, 5(2), 1-12, https://doi.org/10.1088/2515-7655/acb6b3.

Bousbaa, H., Kaid, N., Alqahtani, S., Maatki, C., Naima, K., Menni, Y., & Kolsi, L. (2024). Prediction and Simulation of Biodiesel Combustion in Diesel Engines: Evaluating Physicochemical Properties, Performance, and Emissions. Fire, 7(10), 364-387, https://doi.org/10.3390/fire7100364.

Ahmed, B. M., Luo, M., Elbadawi, H. A. M., Mahmoud, N. M., & Sui, P. C. (2025). Experimental Study of 2-Ethylhexyl Nitrate Effects on Engine Performance and Exhaust Emissions of Diesel Engine Fueled with Diesel–2-Methylfuran Blends. Energies, 18(1) 98-114. https://doi.org/https://doi.org/10.3390/en18010098.

Mishra, P., Mohapatra, T., Sahoo, S. S., Padhi, B. N., Giri, N. C., Emara, A., & AboRas, K. M. (2024). Experimental assessment and optimization of the performance of a biodiesel engine using response surface methodology. Energy, Sustainability and Society, 14(28) 1-22. https://doi.org/10.1186/s13705-024-00447-2.

Rahman, S. M. A., Fattah, I. M. R., Ong, H. C., & Zamri, M. F. M. A. (2021). State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles. Energies, 14(6), 1766-190. https://doi.org/https://doi.org/10.3390/en14061766.

Nguyen, V. G., Pham, M. T., Le, N. V. L., Le, H. C., Truong, T. H., & Cao, D. N. (2023). A comprehensivereview on the use of biodiesel for diesel engines. International Journal of Renewable Energy Development, 12(4), 720-740. https://doi.org/10.14710/ijred.2023.54612.

Pham, M. T., Pham, V. T., & Cao, D. N. (2023). Design and fabrication of heating device for vegetable oil used for diesel engine. Journal of Technology & Innovation (JTIN), 3(1), 29-37. https://doi.org/10.26480/jtin.01.2023.29.37.

World Health Organization. (2015). Regional Office for Europe(OECD) Economic cost of the health impact of air pollution in Europe: clean air, health and wealth. WHO Regional Office Publication, Copenhagen, Denmark.

Uzoma, N., & Ojapah, M. M. (2023). Experimental Analysis of Gaseous Emission in 2-Stroke Single Cylinder Engine Using Ethanol Gasoline Blends. International Journal of Research and Innovation in Applied Science (IJRIAS), VIII(IV), 123-136. https://doi.org/10.51584/IJRIAS.

Chaurasiya, P. K., Singh, S. K., Dwivedi, R., & Choudri, R. V. (2019). Combustion and emission characteristics of diesel fuel blended with raw jatropha, soybean and waste cooking oils. Heliyon, 5(5), 1-7. https://doi.org/10.1016/j.heliyon.2019.e01564.

Pasha, M. K., Dai, L., Liu, D., Guo, M., & Du, W. (2021). An overview to process design, simulation and sustainability evaluation of biodiesel production. Biotechnology for Biofuels, 14(129), 1-23. https://doi.org/10.1186/s13068-021-01977-z.

Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. S. (2019). Promising Evolution of Biofuel Generations. Subject Review. Renewable Energy Focus, 28, 127-139. https://doi.org/10.1016/j.ref.2018.12.006.

Eluwa, S. E., & Kilanko, O. (2024). Biofuel as an alternative for Sub-Saharan Africa’s transition to cleaner energy. Academia Green Energy,(1), 1-9. https://doi.org/10.20935/AcadEnergy6227.

Ibrahim, H. (2019). Biodiesel Production: Feedstocks, Usage, and Global Status- A Review. Nigerian Research Journal of Chemical Sciences, 7, 38-49.

Kamil, M., Ramadan, K., Ghenai, C., Olabi, A. G., & Nazzal, I. T. (2019). Emissions from Combustion of Second-Generation Biodiesel Produced from Seeds of Date Palm Fruit (Phoenix dactylifera L.). Applied Sciences, 9(18), 3720-3744. https://doi.org/10.3390/app9183720.

Chakraborty, S., & Dunford, N. T. (2024). Algae: Nature’s Renewable Resource for Fuels and Chemicals. Biomass, 4, 329–348. https://doi.org/10.3390/biomass4020016.

Tiwari, C., Verma, T. N., Dwivedi, G., & Verma, P. (2023). Energy-Exergy Analysis of Diesel Engine Fueled with Microalgae Biodiesel-Diesel Blend. Applied Sciences, 13(3), 1857-1880. https://doi.org/10.3390/app13031857

Aboje, A. A., Ohile, S. O., Uthman, H., Olutoye, M. O., & Nwachukwu, C. A. (2023). Optimization and Characterization of Biodiesel Production from Desert Date Seed Oil (Balanites aegyptiaca) via Transesterification Reaction. Journal of Energy Technology and Environment, 5(2), 181-186. https://doi.org/10.5281/zenodo.8025638

Usman, M., Ibrahim, H., & Agbaji, E. (2022). Extraction, Characterization and Determination of Physicochemical Properties of Biodiesel obtained from Desert Date (Balanites aegyptiaca) seed oil. Journal of Applied Science and Environmental Management, 26(12), 2045-2051. https://doi.org/10.4314/jasem.v26i12.19.

Obidah, W., Nadro, M. S., Tiyafo, G. O., & Wurochekke, A. U. (2009). Toxicity of Crude Balanites aegyptiaca Seed Oil in Rats. Journal of American Science, 5(6), 13-16.

Usman, A., & Rufai, I. A. (2020). Properties of Balanites Aegyptiaca Biodiesel as a Pottential Energy Carrier in the Drylands of Nigeria. International Journal of Energy Engineering, 10(4), 95-101. https://doi.org/10.5923/j.ijee.20201004.01.

Dass, P. M., Louis, H., Alheri, A., Amos, P. I., Bifam, M., & Ago, M. A. (2018). Production of Biodiesel Oil from Desert Dates (Balanites aegyptiaca) Seeds Oil Using a Hetrogeneous Catalyst Produced from Mahogany (Khaya senegalensis) Fruit Shells. Analytical Chemistry: An Indian Journal, 18(1).

Alemayehu, H. G. (2015). Physico-chemical characterization and extraction of oil from balanites aegyptiaca plant (seed). World Journal of Pharmaceutical Research, 4(11), 1723-1732.

Kaisan, M. U. (2017). Modelling and Simulation of Biodiesel Blends Performance in Compression Ignition Engines PhD thesis, Mechanical Engineering. Ahmadu Bello University, Zaria, Nigeria.

Chapagain, B., & Wiesman, Z. (2005). Larvicidal effects of aqueous extracts of Balanites aegyptiaca (desert date) against the larvae of Culex pipiens mosquitoes. African Journal of Biotechnology, 4(11), 1351-1354.

Ndana, M., Garba, B., Hassan, L. G., & Faruk, U. Z. (2011). Evaluation Of Physicochemical Properties Of Biodiesel Produced From Some Vegetable Oils Of Nigeria Origin. Bayero Journal of Pure and Applied Sciences, 4(1), 67-71. https://doi.org/10.4314/bajopas.v4i1.15.

Oluwaniyi, O. O., Oloruntele, I. O., Olaniyi, O. B., Hauwa, Sekoni, A., & Hamza, M. I. (2023). Productionand Characterization of Biodiesel from Prunus amygdalus “dulcis” Seed Oil. . International Journal of Scientific Research in Chemical Sciences, 10(4), 24-31.

Oni-Adimabua, O. N., Ifeanyi-Nze, F. O., Abimbolu, A. K., Opadokun, E. O., Omolusi, A. R., Ezeokolie, E. D., Udoh, E. A., Afuape, A. R., Areola, M. O., Wokoma, P.-T. B., Odoh, E. C., Aiso, S. U., Francis, C. J., Egbo, J. O., Ayanleke, T. A., & Ankomah, N. O. (2024). Production, optimization, and characterization of biodiesel from almond seed oil using a bifunctional catalyst derived from waste animal bones and almond shell. European Journal of Sustainable Development Research, 8(3), 1-10.

Hoang, A. T. (2021). Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system. Journal of Marine Engineering and Technology 20(5), 299-311. https://doi.org/10.1080/20464177.2018.1532734.

Khan, M. B., Kazim, A. H., Shabbir, A., Farooq, M., Farooq, H., Ali, Q., Danish, M. R., Qureshi, N. S., & Rab, H. A. (2020). Performance and emission analysis of high purity biodiesel blends in diesel engine. Advances in Mechanical Engineering, 12(11), 1–10. https://doi.org/https://doi.org/10.1177/1687814020974156.

Knothe, G., Gerpen, J. V., & Krahl, J. (2005). The Biodiesel Handbook. AOCS Press.

Chavan, M., Amarnath, H. K., & Hebbal, O. D. (2014). Experimental Investigation on Performance, Emission and Combustion Characteristics of Single Cylinder Diesel Engine Running on Desert Date (Balanites Aegyptiaca) Biodiesel. International Journal of Engineering Research & Technology (IJERT), 3(8), 1352-1358.

Naik, N. S., & Balakrishna, B. (2016). Experimental evaluation of a diesel engine fueled with Balanites aegyptiaca (L.) Del biodiesel blends. Biofuels. https://doi.org/https://doi.org/10.1080/17597269.2016.1168026.

Ravi, S. D., Harlapur, M. D., & Pneeth, P. R. (2020). Experiment With a Diesel Engine Fuelled by Biodiesel Mixes with Balanites Aegyptiaca (L.). International Journal of Research in Mechanical, Mechatronics and Automobile Engineering(IJRMMAE), 6(1), 36-44.

Odega, C., Anguruwa, G., & Fakorede, C. (2021). Biodiesel Production and Characterization from Used Vegetable Oil. Jounal of Applied Science Environmental Management, 25(4). 537-542 https://doi.org/https://doi.org/10.4314/jasem.v25i4.7.

Saleh, F. A., Allawi, M. K., S.Imran, M., & Samarmad, A. O. (2024). A Simulation of the Impact of Biodiesel Blends on Performance Parameters in Compression Ignition Engine. Journal of Ecological Engineering, 25(7), 1-7.

Alptekin, E., & Canakci, M. (2011). Optimization of transesterification for methyl ester production from chicken fat. Fuel, 90(8), 2630-2638. https://doi.org/10.1016/j.fuel.2011.03.042.

Ozcanli, M., Gungor, C., & Aydin, K. (2013). Biodiesel Fuel Specifications: A Review. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 35(7), 635-647. https://doi.org/10.1080/15567036.2010.503229.