Deep Learning Models for Oil Spill Detection in Marine Settings: A Literature Review
Main Article Content
Abstract
Oil spills in marine settings can be identified and tracked by remote sensing. The accuracy and effectiveness of oil spill detection using faraway sensing data have shown tremendous promise for deep learning (DL) algorithms, particularly deep neural networks (DNNs). In this literature review, we summarized the key DL models that have been used in oil spill detection, including CNN, RNN, DBN, AE, and GAN. We also discussed the different components and tasks involved in DL models, such as pooling layers, forward and backpropagation, and optimization of weights. Additionally, we present several case studies that have successfully applied DL approach in oil spill recognition, including the use of DBN to differentiate oil spills from lookalikes in SAR images, and the use of spatial-spectral jointed SAE to acquire and categorize oil slicks on the ocean surface using hyperspectral data. The findings from these studies demonstrate the potential of DL models to improve the accuracy and proficiency of oil spill detection using RS data.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Olusola, O. I., & Olujobi, O. J. (2018). The impact of oil spills on the environment: Remediation, management, and legal implications in Nigeria. Journal of Environmental Treatment Techniques, 6(3), 143-151.
Bello, O. A. (2014). Oil spillage response in Nigeria: An overview. Journal of Environment and Earth Science, 4(2), 103-113.
Akpan, E. O. (2022). Environmental degradation in Nigeria's Niger Delta region: Causes, impacts, and solutions. Journal of Environmental Management, 303, 113980.
Olalekan, S. A., & Gordon, C. (2011). Oil exploration and spillage in the Niger Delta of Nigeria. Journal of Geography and Regional Planning, 4(6), 334-347.
Chidumeje, A., Eze, G. O., & Ezenwaji, H. M. G. (2015). Environmental degradation in the Niger Delta region of Nigeria: Causes and responses. Journal of Environment and Earth Science, 5(8), 97-108.
Oladipupo, O. O., Oko, J. O., & Olatunji, A. S. (2016). Environmental degradation in the Niger Delta region of Nigeria: Causes, effects, and remedies. Journal of Environment and Earth Science, 6(13), 93-101.
Ogbuigwe, J. U. (2018). The impact of oil exploration and production on the environment in Nigeria: A synthesis of research findings. Journal of Environmental Management, 218, 1-9.
Osuagwu, C. N., & Olaifa, F. E. (2018). A review of oil spillage and environmental degradation in Nigeria. Journal of Environmental Science and Sustainable Development, 1(1), 1-14
Bilal, M., & Norbert, T. (2022). Review of current remote sensing techniques for monitoring oil spills. Environmental Pollution, 293, 118411.
Werner, M., Benjamin, J., & Kan, J. (2017). Oil spill detection by SAR imaging: Effects of wind and currents. Journal of Geophysical Research: Oceans, 122(9), 7311-7323.
Jitesh, P., Singh, P., & Verma, H. K. (2020). Oil spill detection using satellite images: A review. Journal of Remote Sensing & GIS, 11(3), 1-10.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Adedapo, A. E., Akintokun, O. A., & Olaofe, O. (2022). Remediation of oil spills in aquatic environment: A review. Science of the Total Environment, 802, 149670.
Chadetri, P., & Arabinda, M. (2013). Impact of oil spill on marine environment and its effects on living organisms. International Journal of Research in Environmental Science and Technology, 3(4), 91-97.
Uttara, K., Singh, A. K., & Kumar, S. (2016). A review of marine oil spill remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7), 2796-2806.
Erkan, K., Emre, E., Ali, Y., & Güneş, E. (2021). Marine oil spill detection in synthetic aperture radar images using deep learning algorithms. Measurement, 176, 109311.
Oshienemen, E., Imonikhe, T. A., & Ihensekhien, O. A. (2018). The effect of oil spills on agriculture in the Niger Delta region of Nigeria. Journal of Agriculture and Environmental Sciences, 7(1), 66-72.
Suman, S., Chakraborty, S., & Patel, N. (2013). Automated oil spill detection from satellite images using curvelet transform and level set method. Marine Pollution Bulletin, 76(1-2), 325-333.
Liu, Y., Zhang, L., Chen, J., & Chen, J. (2019). An automatic ship detection algorithm for SAR images based on a one-dimensional convolutional neural network. Sensors, 19(20), 4485.
Maged, M. A. (2014). Review on oil spill detection using remotely sensed data. Journal of Remote Sensing & GIS, 3(2), 1-9.
Fingas, M. F., & Brown, C. E. (2017). Review of oil spill remote sensing. Marine Pollution Bulletin, 118(1-2), 1-17.
Schultz, M. (2013). Oil spill remote sensing: A review of past, present, and future technologies. Marine Pollution Bulletin, 69(1-2), 4-16. doi:10.1016/j.marpolbul.2013.01.016
Fingas, M. F., & Brown, C. E. (1997). Review of oil spill remote sensing. Spill Science & Technology Bulletin, 4(4), 199-208. doi:10.1016/s1353-2561(97)00015-6
Al-Ruzouq, R., Al-Fadhel, M., & Yang, X. (2020). Oil Spill Detection Using Remote Sensing Techniques: A Review. Energies, 13(12), 3213. doi:10.3390/en13123213
Chen, J., Huang, H., Li, Q., & Li, X. (2013). Automatic Oil-Spill Detection in Synthetic Aperture Radar Images Using Curvelet Transform and Nonlocal Means Filtering. IEEE Transactions on Geoscience and Remote Sensing, 51(2), 919-927. doi:10.1109/TGRS.2012.2204069
Chen, J., Shi, F., Li, Q., Li, X., Liang, D., & Liang, S. (2017). A Segmentation Approach for Oil-Spill Detection in Polarimetric SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 55(9), 5257-5266. doi:10.1109/TGRS.2017.2714759
Igor, Y. V., Timofeyev, Y. M., Mityagina, M. I., & Ivankov, V. N. (2014). Current status of satellite synthetic aperture radar in oceanography. International Journal of Remote Sensing, 35(5), 1575-1588. doi:10.1080/01431161.2013.878563
Andrea, L., Yang, X., & Li, X. (2015). Oil spill detection with polarimetric synthetic aperture radar (SAR) data. Remote Sensing, 7(10), 13567-13588.
Pilžis, K., & Vaišis, V. (2016). Conference for Junior Researchers „Science – Future of Lithuania., 145-150. Oil Spill Detection with Remote Sensors. doi:10.3846/aainz.2016.20
Văduva, C., Dănișor, C., & Datcu, M. (2018). Joint SAR Image Time Series and PSInSAR Data Analytics: An LDA Based Approach. Remote Sensing, 10(9), 1436. doi:10.3390/rs10091436
Brekke, C., & Solberg, A. H. (2008). Classifiers and confidence estimation for oil spill detection in ENVISAT ASAR images. IEEE Geoscience and Remote Sensing Letters, 5(1), 65–69.
Karathanassi, V., Topouzelis, K., Pavlakis, P., & Rokos, D. (2006). An object-oriented methodology to detect oil spills. International Journal of Remote Sensing, 27, 5235–5251.
Song, D., Ding, Y., Li, X., Zhang, B., & Xu, M. (2017). Ocean oil spill classification with RADARSAT-2 SAR based on an optimized wavelet neural network. Remote Sensing, 9, 799.
Crisp, D. J. (2004). The state-of-the-art in ship detection in synthetic aperture radar imagery. Technical Report, Australian Government , Department of Defense.
Greidanus, H., & Kourti, N. (2006). Findings of the declims project—Detection and classification of marine traffic from space. SEASAR Advances in SAR Oceanography ENVISAT ERS Missions.
Marino, A., Sanjuan-Ferrer, M. J., Hajnsek, I., & Ouchi, K. (2015). Ship detection with spectral analysis of synthetic aperture radar: A comparison of new and well-known algorithms. Remote Sensing, 7(5), 5416–5439.
Mohammed, M., Khan, B. M., & Bashier, E. B. (2020). Machine Learning Algorithms and Applications (1st ed.). CRC Press
Wolff, S., O’Donncha, F., & Chen, B. (2020). Statistical and machine learning ensemble modelling to forecast sea surface temperature. Journal of Marine Systems, 208, 103347.
Li, Y., Lu, H., Zhang, Z., & Liu, P. (2020). A novel nonlinear hyperspectral unmixing approach for images of oil spills at sea. International Journal of Remote Sensing, 41, 4682–4699.
Prakash, N., Manconi, A., & Loew, S. (2020). Mapping landslides on EO data: Performance of deep learning models vs. Traditional machine learning models. Remote Sensing, 12(3), 346. doi:10.3390/rs12030346
Sharma, R., Rani, S., & Memon, I. (2020). A smart approach for fire prediction under uncertain conditions using machine learning. Multimedia Tools and Applications, 79, 1–14.
Mazzia, V., Comba, L., Khaliq, A., Chiaberge, M., & Gay, P. (2020). UAV and machine learning based refinement of a satellite-driven vegetation index for precision agriculture. Sensors, 20, 2530.
Al-najjar, H. A., Kalantar, B., Pradhan, B., & Saeidi, V. (2019). Land Cover Classification from fused DSM and UAV Images Using Convolutional Neural Networks. Remote Sensing, 11, 1461. doi:10.3390/rs11121461.
Shen, H., Jiang, Y., Li, T., Cheng, Q., Zeng, C., & Zhang, L. (2020). Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data. Remote Sensing of Environment, 240, 111692.
Yang, J., Wan, J., Ma, Y., Zhang, J., & Hu, Y. (2020). Characterization analysis and identification of common marine oil spill types using hyperspectral remote sensing. International Journal of Remote Sensing, 41, 7163–7185.
Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York, NY, USA, : Springer: .
Ma, L. (2016). Support Tucker machines based marine oil spill detection using SAR images. Indian Journal of Geo-Marine Sciences, 45, 1445–1449.
Li, Y., Cui, C., Liu, Z., Liu, B., Xu, J., Zhu, X., & Hou, Y. (2017). Detection and monitoring of oil spills using moderate/high-resolution remote sensing images. Archives of Environmental Contamination and Toxicology, 73, 154–169.
Ghose, M. K., Pradhan, R., & Ghose, S. S. (2010). Decision tree classification of remotely sensed satellite data using spectral separability matrix. International Journal of Advanced Computer Science and Applications, 1, 93–101.
Topouzelis, K., & Psyllos, A. (2012). Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 135–143.
Singha, S., Vespe, M., & Trieschmann, O. (2013). Automatic synthetic aperture radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark. Marine Pollution Bulletin, 73(1), 199–209.
Zhang, Y., Li, Y., Liang, X. S., & Tsou, J. (2017). Comparison of oil spill classifications using fully and compact polarimetric SAR images. Applied Sciences, 7, 193.
Mera, D., Fernández-Delgado, M., Cotos, J. M., Viqueira, J. R., & Barro, S. (2017). Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images. Neural Computing Applications, 28, 1101–1117.
James, A. P. (2020). Deep Learning Classifiers with Memristive Networks. Heidelberg, Germany: Springer: Berlin, 14.
Deng, L., Way, O. M., Yu, D., & Way, O. M. (2014). Deep learning: Methods and applications. Signal Processing, 7, 197–387.
Jiao, Z., Jia, G., & Cai, Y. (2019). A new approach to oil spill detection that combines deep learning with unmanned aerial vehicles. Computers & Industrial Engineering, 135, 1300–1311.
Chen, Y., Li, Y., & Wang, J. (2020). An end-to-end oil-spill monitoring method for multisensory satellite images based on deep semantic segmentation. Sensors, 20(3), 725. doi: 10.3390/s20030725.
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.
Shadman, S., Zahidun, A., & Md, A. S. (2019). Implementation of Fruits Recognition Classifier using Convolutional Neural Network Algorithm for Observation of Accuracies for Various Hidden Layers. Global Research and Development (GRD) Journal for Engineering, 5(8), 555-559.
Song, J., Gao, S., Zhu, Y., & Ma, C. (2019). A survey of remote sensing image classification basedonCNNs. Big Earth Data, 3, 232–254.
Wang, L., Xu, X., Dong, H., Gui, R., & Pu, F. (2018). Multi-pixel simultaneous classification of PolSAR image using convolutional neural networks. Sensors, 18(3), 769.
.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions Pattern Analysis and Machine Intelligence, 37, 1904–1916.
Chen, L.-C., Papandreous, G., Kokkinos, I., Murphy, K., & Yullie, A. L. (2018). DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834-848. doi:10.1109/TPAMI.2017.2699184
Zhang, J., Feng, H., Luo, Q., Li, Y., Wei, J., & Li, J. (2020). Oil spill detection in quad-polarimetric SAR Images using an advanced convolutional neural network based on SuperPixel model. Remote Sensing, 12, 944.
Horea, M., & Mihai, O. (2018). Fruit recognition from images using deep learning. Acta Universitatis Sapientiae, Informatica, 26–42.
Dong, G., Liao, G., Liu, H., & Kuang, G. (2018). A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images. IEEE Geoscience and Remote Sensing Magazine, 6, 44–68.
Parikh, H., Patel, S., & Patel, V. (2020). Classification of SAR and PolSAR Images Using Deep Learning: A Review. Journal of Image and Data Fusion, 11(1), 1-32. doi:10.1080/19479832.2019.1655489
Gallego, A.-J., Gil, P., Pertusa, A., & Fisher, R. (2018). Segmentation of oil spills on side-looking airborne radar imagery with autoencoders. Sensors, 18(3), 797. doi: 10.3390/s18030797.
Bazine, R., Wu, H., & Boukhechba, K. (2019). Semantic segmentation of SLAR imagery with convolutional LSTM selectional autoencoders. Remote Sensing, 11, 1–22.
Chen, G., Guo, H., & An, J. (2017). Research on SAR oil spill image classification based on DBN in small sample space. 4th International Conference on Systems and Informatics (ICSAI), 479-483. Hangzhou, China.
Alecci, J. (2017 ). Transfer Learning for Rain Detection in Images. Master Thesis, TU Delft University, Department of Computer Science. Retrieved from http://resolver.tudelft.nl/uuid:3bf546c0-a254-4c72-9ee4-02a0919c1624
Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing. (4th ed.) Pearson.
Lecun, Y., Bottou, L., Bengio, Y., & Ha, P. (1998). LeNet. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1–46.
Yaohua, X., & Xudong, M. (2019). A SAR oil spill image recognition method based on densenet convolutional neural network. International Conference on Intelligent Robots and Systems, 78–81. Macau, China.
Prakash, N., & Zielinski, O. (2025). AI-enhanced real-time monitoring of marine pollution: part 1-A state-of -the-art and sdooping review. Frontiers in Marine Science -Ocean Observatory, 12, 1486615. Doi:10.3389/fmars.2025.1486615.
Mahbub, H., Jordan, J. B., & Diego, R. F. (2018). A Study on CNN Transfer Learning for Image Classification Conference Paper. 18th Annual UK Workshop on Computational Intelligence, 456-574. Nottingham.
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep Learning (1st ed.) Cambridge, UK: MIT Press.
Simonyan, K., & Zi sserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. 3rd International Conference on Learning Represenattions, 1-14. San Diego, California, United States
Hinton, G., & Sejnowski, T. (1999). Unsupervised Learning: Foundation of Neural Computation. MIT Press.
C. Yi, R. W. Flores, R. Chincha and Y. Tian (2013), Finding Objects for Assisting Blind People, Netw Model Anal Health Inform Bioinform, vol. 2, no. 2, pp. 71-79
N. Alzahrani and H. Al-Baity (2023), Object Recognition System for the Visually Impaired: A Deep Learning Approach using Arabic Annotation, Applications of Neural Networks for Speech and Language Processing, vol. 12, no. 3, p. 541.
S. Shaikh, V. Karale and G. Tawde (2020), Assistive Object Recognition System for Visually Impaired, The International Journal of Engineering Research & Technology (IJERT), 9(9), 736-740.