Application of Upper Bound Analysis and Taguchi Method In Aluminium Extrusion
Main Article Content
Abstract
This research explores the use of upper bound analysis in calculating the extrusion force through u-shaped dies with varying fillet radii, billet lengths, friction coefficients and billet temperatures. Taguchi method was used in design of this experiment which is a four factor four level experiment giving a total of 16 experimental runs and aluminium 3003 was used as the workpiece. Based on these results a model equation was developed to predict the extrusion force. The correlation coefficient and covariance of the data generated, revealed that a positive and direct relationship existed between fillet radius, billet length, friction coefficient and extrusion force, while an inverse and indirect relationship existed between billet temperature and extrusion force. The R2 value was 99.96% and adjusted R2 value of 99.80% and a root mean square error of 0.2137, indicating that the accuracy of the model is good.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Dieter, G., E. (1986). Mechanical Metallurgy. S.I. Metric Edition‚ McGraw Hill book Company, 616-617.
Hosseini, A., Farhangdoost, K., H, & Manoochehri, K. (2012). Modelling of Extrusion Process and Application of Taguchi Method and ANOVA Analysis for Optimization of the Parameters. Mechanika‚ 18(3), 301-305.
Hanson, S., & Domkin, K. (2005). Physically Based Material Model in Finite Element Simulation of Extrusion of Stainless Steel Tubes. Conference Proceedings of the 8th International Conference on Technology of Plasticity (ICTP), Verona Italy, 1-8.
Mahmoodkhani, Y., Wells, M., Parson, N., & Poole, W., J. (2014). Numerical Modelling of the Material Flow during Extrusion of Aluminium Alloys and Transverse Weld Formation. Journal of materials Processing Technology, DOI: 10.1016/j.jmatprotec.2013.09.028, 214(3): 688-700.
Ramya, K.‚ & Sreedevi, K. (2016). Modelling and Optimization of Extrusion Process Parameters of AA6061 using Taguchi Method. International Journal of Engineering and Technology‚ 03(08), 1753-1756.
Akhgar, J., M.‚ & Mirjalili, A., S. (2011). An Investigation into the Deformation Behaviour of AA6061-5%SiCp Composite during and after Hot Extrusion Process. Proceedings of Institute of Mechanical Engineering L.J Mater des Appl‚ 225(1) 22-31.
Rattanochaikal, T.‚ Janudom, S.‚ Memongkol, N.‚ & Wannasin, J. (2010). Development of Aluminium Semi-Solid Extrusion Process. Journal of Materials and Minerals‚ 20‚ 17- 21.
Arbinia‚ K., & Orangi‚ S. (2010). Numerical Study of Backward Extrusion Process Using Finite Element Method. Finite Element Analysis‚ David Moratal Intech Open DOI: 10 5772/10219, 381-400.
Chahure‚ A., S., & Inamdar‚ K., H. (2017). Optimization of Aluminium Extrusion Process using Taguchi Method. IOSR Journal of Mechanical and Civil Engineering‚ 61-65.
Parvizian‚ F., Schneidt‚ A., Svendsen‚ B., & Mahnken‚ R. (2010). Thermo-Mechanically Coupled Modelling and Simulation of Hot Metal Forming Processes Using Adaptive Remeshing Method. GAMM-MiH DOI 10: 1002/gamm, 201010008, 33(1), 95- 115.
Chen‚ L., Zhao‚ G., Yu‚ J., & Zhang‚ W. (2010). Constituted Analysis of Homogenized 7005 Aluminium Alloy at Elevated Temperatures for Extrusion Processes. Mater des 2015: 66:129-136.
Kapadia‚ N., & Desai, A. (2015). Review on Optimization Study of Die Extrusion Process Using Finite Element Method. International Journal of Scientific Research Development, (392), 2328-2330.
Dang‚ Y., Y., Zhang‚ C., S., Zhao‚ G.,Q., Guan‚ Y., J., Gao‚ A., J., & Sun‚ W., C. (2016). Constitutive Equations and Processing maps of an Al-Mg-Si Aluminium Alloy. Determination and application in simulating extrusion process of complex profiles. Materials & Design, 92, 983-997.
Jabar‚ K., J. (2010). Calculation of Relative Extrusion Pressure for Circular Section by Local Co-ordinates System Using Finite-Element Method. Diyala Journal of Engineering Sciences‚ 03, (2) 80-96.
Barisic‚ B., Car‚ Z., & Ikoric‚ M. (2008). Analysis of Different Modelling Approach of Determining Backward Extrusion Force on AlCu 5PbBi Material. Metallurgia, 313-316.
Yadav‚ R., R., Dewang‚ V., Raghuwonshi‚ J., & Sharma‚ V. (2018). Finite Element Analysis of Extrusion Process Using Aluminium Alloys. Materials Today Proceedings‚ Elsevier, 24‚ 500- 509.
Oyinbo‚ S., T., Ikumapayi‚ O., M., Ajiboye‚ J., S., & Afolalu‚ S., A. (2015). Numerical Simulation of Axisymmetric and Asymmetric Extrusions Process using Finite Element Method. International Journal of Scientific and Engineering Research‚ 6(6), 1245-1259.
Ajiboye‚ J., S., & Adeyemi‚ M., B. (2008). Effects of Extrusion Variables on Temperature Distribution in Axisymmetric Extrusion Process‚ International Journal of Mechanical Sciences‚ SO (3): 522-537‚ DOI: 10.1016/j-ijmecsci-2007.08.006,
Oyinbo‚ S., T., Jen‚ C., T., & Ismail‚ S., O. (2020). Effects of Frictional Boundary Conditions and Percentage Area Reduction on the Extrusion Pressure. Engineering Solid Mechanics, 8(2020) 205-214.
Onuh‚ S., O., Ekoja‚ M., & Adeyemi‚ M., B. (2003). Effects of Die Geometry and Extrusion Speed on the Cold Extrusion of Aluminium Alloy. Journal of Materials Processing Technology‚ DOI:10.1016/50924 0136(02) 00941-X, 132 (1-3): 274-285.
Kumar‚ A., V., Ratnam‚ C., H., Kesava -Rao‚ V., S., & Kumar‚ C., R. (2019). Study on Influence of Die Angle in Cold Extrusion on Properties of Nano Sic Reinforced 6061 Aluminium Alloy. Materials Today Proceedings‚ 18(7), 4366-4373.
Mohammed‚ V., Prasath‚ S., Arunkumar‚ M., Pradeep‚ G., M., & Babu‚ S., S. (2021). Modelling and Stress Analysis of Aluminium Alloy Based Composite Pressure Vessel through ANSYS Software. Materials Today Proceedings‚ 37(2), 1911-1916.
Magid‚ H., M., Sulaiman‚ S., & Ariffin‚ M., K., A. (2014). Modelling and Simulation of Forward Al-Extrusion Process using FEM. Applied Mechanics Material‚ Trans Tech Publications, Switzerland‚ Doi:1010.4028/www.scientific.net/Amm.564.525, 64‚ 525-532.
Shalini‚ K., Ajeet‚ K., R., Devendra‚ K., U., & Rahul‚ C., F. (2015). Deformation Behaviour and Characterization of Copper Alloy in the Extrusion Process. International Journal of Mechanical Engineering Technology (IJMET), IAEME Publication, 6(7), 72-78.
Dhanalakshmi‚ S., Svakumar‚ P., Shanmuga, K., S., & Arand‚ S. (2017). Finite Element Analysis and Experimental Study on Effects of Extrusion Ratio during Hot Extrusion Process of Aluminium Matrix Composites. Defence Science Journal‚ DOI: 1014429/dsj67.11535, 67(4), 428-436.
Daiquan‚ Z., & Guoping‚ C. (2012). The Numerical Simulation for Extrusion Forging of Magnesium Alloy Pipes. International Conference on Solid State Devices and Materials Elsevier Physics Proceedings‚ 25, 125-129.
Fancy‚ K., A., SrinivasaRao‚ C., & Gopalarishnaiah‚ P. (2018). Optimization of Direct Extrusion Process Parameteron 16MnCr5 and AISI 1010 using Deform 3D. 14th Global Congress on Manufacturing and Management Elsevier Procedia Manufacturing‚ 30‚ 498-505.
Yahya‚ M., Many‚ A., W., Nick‚ P., Yuanyuan‚ G., & Warren‚ J., P. (2010). Mathematical Modelling on the Extrusion of AA3xxx Aluminium Alloys. Proceedings of the 12th International Conference on Aluminium Alloys‚ Yokohama Japan‚ 566-571.
Ajiboye, J., S.‚ & Adeyemi, M., B. (2007). Upper Bound Analysis for Extrusion at Various Die Land Lengths and Shaped Profiles. International Journal of Mechanical Sciences‚ Elsevier, 49‚ 335-351.
Jude, A., O., Emmanuel, I., E., Sonal, N., Daniele, C., Ajay, K., D., & Janusz, A., K. (2021). Modelling and Process Optimization of Hydrothermal Gasification for Hydrogen Production A Complete Review. Journal of Supercritical Fluids, 173, 105199 https: doi.org/10.1016/j. supflu.2021.105199.