Effect of Heat Treatment on the Mechanical Properties of Aluminium 6063 Reinforced with Alumina, Titania, and Hybrid Powders

Main Article Content

Anuoluwapo Blessing Bello
Johnson Sunday Alabi
Ayowole Oluwaseyi Elugbaju
Olumide Joseph Olapade

Abstract

The research examines the mechanical behaviour changes of alumina and titania-reinforced Aluminium 6063 composites after T6 heat treatment. The stir casting method combined with 3 wt% or 6 wt% reinforcement followed by a heat treatment solution at 520°C for 2 hours, then water quenching and artificial aging at 180°C for 8  hours. Tensile properties and hardness were enhanced through heat treatment such that peak hardness reached 116 HRB in 6 wt% TiO₂ composites. Tensile strength increased by 44.8% in 3 wt% TiO₂ composites (192.8 MPa), and peak hardness reached 116 HRB in 6 wt% TiO₂ samples. The impact strength of materials decreased with reinforcement addition, but heat treatments introduced marginal improvements when working with low reinforcement amounts. The research findings present essential knowledge to improve Aluminium 6063 composites for automotive and aerospace sector applications.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
A. B. Bello, J. S. Alabi, A. O. Elugbaju, and O. J. Olapade, “Effect of Heat Treatment on the Mechanical Properties of Aluminium 6063 Reinforced with Alumina, Titania, and Hybrid Powders”, AJERD, vol. 8, no. 2, pp. 121–129, Jun. 2025.
Section
Articles

References

B. Manjunath and Hineeth Kumar SP2, “Evaluation of Mechanical properties for Functionally Graded Material base metal Aluminum [AL - 6063] when reinforced with Silicon Carbide [SiC] and Titanium Dioxide [TiO2],” International Research Journal of Engineering and Technology (IRJET), 2023.

J. Pattar, D. Ramesh, R. L. Malghan, A. Kumar, P. Kumar, and V. H. M., “Investigation of AA6063-based metal–matrix composites reinforced with TiO2 dispersoids through digitally assisted techniques for mechanical, tribological, and microstructural characterizations,” Frontiers in Mechanical Engineering, vol. 10, Jun. 2024, doi: 10.3389/fmech.2024.1393959.

A. Jamwal, U. K. Vates, P. Gupta, A. Aggarwal, and B. P. Sharma, “Fabrication and Characterization of Al2O3–TiC-Reinforced Aluminum Matrix Composites,” 2019, pp. 349–356, doi: 10.1007/978-981-13-6412-9_33.

G. Mathew and V. K. N. Kottur, “Effect of ceramic reinforcements on the mechanical and tribological properties of aluminium metal matrix composites – A review,” Materials Today: Proceedings, Sep. 2023, doi: 10.1016/j.matpr.2023.09.099.

A. A. Iqbal and D. M. Nuruzzaman, “Effect of the Reinforcement on the Mechanical Properties of Aluminium Matrix Composite: A Review,” 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:2346185

S. Bhaskar, M. Kumar, and A. Patnaik, “Mechanical and Tribological overview of ceramic particulates reinforced aluminium alloy composites,” Reviews on Advanced Materials Science, vol. 58, no. 1, pp. 280–294, Jan. 2019, doi: 10.1515/rams-2019-0033.

S. O. Adeosun, S. A. Balogun, O. I. Sekunowo, and M. A. Usman, “Effects of Heat Treatment on Strength and Ductility of Rolled and Forged Aluminum 6063 Alloy,” 2010.

K. K. Alaneme and M. O. Bodunrin, “Corrosion Behavior of Alumina Reinforced Aluminium (6063) Metal Matrix Composites,” Journal of Minerals and Materials Characterization and Engineering, vol. 10, no. 12, pp. 1153–1165, 2011, doi: 10.4236/jmmce.2011.1012088.

A. F. Owa and P. A. Olubambi, “Enhancing mechanical properties of aluminium 6063 with crab shell particle reinforcement,” Discover Applied Sciences, vol. 6, no. 7, p. 337, Jun. 2024, doi: 10.1007/s42452-024-06035-5.

S. R. Choi and N. P. Bansal, “Alumina-Reinforced Zirconia Composites,” 2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:14018666

D. K. Koli and R. Purohit, “Properties and Characterization of Al-Al2O3 Composites Processed by Casting and Powder Metallurgy Routes (Review),” 2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:12483120

M. Y. B, T. P. Bharathesh, and R. Keshavamurthy, “Influence of Hot Extrusion on Mechanical Characteristics of Al6063-TiC Metal Matrix Composites,” 2018. [Online]. Available: http://www.ijsart.com

K. K. R. Yendapalli, A. Hussain Shaik, V. K. R. Narahari, S. Pramanik, and S. Bhaumik, “Effect of reinforcements on graphite/titania/aluminium nanohybrid composites,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 236, no. 2, pp. 217–224, Feb. 2022, doi: 10.1177/13506501211047741.

Z. Hu, P. Li, C. Fan, Y. Xiao, J. Huang, and W. Ma, “Research progress on aluminum matrix composites reinforced by medium and high volume fraction hybrid particles,” Materials Express, vol. 14, no. 3, pp. 353–369, Mar. 2024, doi: 10.1166/mex.2024.2673.

A. Nazeer and M. Safiulla, “Mechanical and Wear Properties of Al6063 Metal Matrix Composite Reinforced with Al2O3 Particles,” International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 5, pp. 3955–3960, Jan. 2020, doi: 10.35940/ijrte.E6732.018520.

A. M. Semiletov, A. A. Chirkunov, O. Yu. Grafov, and Y. I. Kuznetsov, “Stability of Supehydrophobic Layers Formed by Organic Acids on the Surface of Aluminum Alloy 6063,” Coatings, vol. 12, no. 10, p. 1468, Oct. 2022, doi: 10.3390/coatings12101468.

X. Li, H. Yan, Z.-W. Wang, N. Li, J.-L. Liu, and Q. Nie, “Effect of Heat Treatment on the Microstructure and Mechanical Properties of a Composite Made of Al-Si-Cu-Mg Aluminum Alloy Reinforced with SiC Particles,” Metals (Basel), vol. 9, no. 11, p. 1205, Nov. 2019, doi: 10.3390/met9111205.

D. Rahmalina, H. Sukma, A. Rokhim, and A. Suhadi, “Mechanical Properties of SiC/Gr Reinforced Hybrid Aluminum Composites after Heat Treatment,” Materials Science Forum, vol. 1042, pp. 111–115, Aug. 2021, doi: 10.4028/www.scientific.net/MSF.1042.111.

X. Li, H. Yan, Z.-W. Wang, N. Li, J.-L. Liu, and Q. Nie, “Effect of Heat Treatment on the Microstructure and Mechanical Properties of a Composite Made of Al-Si-Cu-Mg Aluminum Alloy Reinforced with SiC Particles,” Metals (Basel), vol. 9, no. 11, p. 1205, Nov. 2019, doi: 10.3390/met9111205.

(Duplicate of [17].)

A. D. Pradeep and T. Rameshkumar, “Effect of Heat Treatment on Metallurgical and Mechanical Properties of an Aluminium 6061 Hybrid Composite,” Materiali in Tehnologije, vol. 58, no. 5, Oct. 2024, doi: 10.17222/mit.2024.1149.

N. M. Siddesh Kumar, Dhruthi, G. K. Pramod, P. Samrat, and M. Sadashiva, “A Critical Review on Heat Treatment of Aluminium Alloys,” Materials Today: Proceedings, vol. 58, pp. 71–79, 2022, doi: 10.1016/j.matpr.2021.12.586.

A. Nazeer and M. Safiulla, “Mechanical and Wear Properties of Al6063 Metal Matrix Composite Reinforced with Al2O3 Particles,” International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 5, pp. 3955–3960, Jan. 2020, doi: 10.35940/ijrte.E6732.018520.

(Duplicate of [15].)

J.-R. Zhao, F.-Y. Hung, and J.-H. Chen, “Effects of Heat-Treatment and Cold-Rolling on Mechanical Properties and Impact Failure Resistance of New Al 6082 Aluminum Alloy by Continuous Casting Direct Rolling Process,” Materials, vol. 17, no. 4, p. 805, Feb. 2024, doi: 10.3390/ma17040805.

P. K. R, R. R, K. L, and C. S, “Mechanical Characterization of Aluminium-Titania Metal Matrix Composites,” 2020, doi: 10.3233/APC200214.

M. Mohammadi and H. R. Ashtiani, “Influence of heat treatment on the aa6061 and aa6063 aluminum alloys behavior at elevated deformation temperature,” Iranian Journal of Materials Science and Engineering, vol. 18, no. 2, pp. 1–17, 2021, doi: 10.22068/ijmse.1890.

D. Özyürek, T. Tunçay, and H. Kaya, “The Effects of T5 and T6 Heat Treatments on Wear Behaviour of AA6063 Alloy,” High Temperature Materials and Processes, vol. 33, no. 3, pp. 231–237, Jun. 2014, doi: 10.1515/htmp-2013-0060.