Physical and Mechanical Behaviours of Tympanotonus Fuscatus Reinforced Polyethylene

Main Article Content

Victoria Dumebi Obasa
Samuel Okonkwo
https://orcid.org/0009-0005-0973-0426
Oludolapo Akanni Olanrewaju
Samson Oluropo Adeosun
https://orcid.org/0000-0001-9847-7592
Olugbemi Omotoso
Adebola Omoolorun

Abstract

This paper investigated the physical and mechanical characteristics of the periwinkle shell (Tympanotonus fuscatus) particle to determine its effectiveness as reinforcement in polyethylene matrix composite for potential engineering applications with a reduction in fossil-based constituents with its attendant environmental impact. The composites were constituted from periwinkle particle fractions from 5 to 40 wt. %, with five different particle sizes: 106, 150, 177, 250, and 420 μm. Test specimens were investigated via Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), tensile, impact, and flexural, density, and water absorption evaluations. Results showed that densities of samples at all particle sizes increased with filler content but reduced with enlargement of the particle size of the filler owing to the increase in void sizes between the filler and the matrix. However, the developed composites still feature within the density range of low-density, to linear low-density of polymer composite. The water absorptivity decreased as the filler content increased due to the crystalline nature of the filler. Specifically, composites' peak impact energy, and flexural strength, of 21.54 J for 150 μm sample at 40 wt. % filler content and 11.96 MPa for 106 µm sample at 5 wt. % filler content was recorded respectively. FTIR spectrum shows the presence of additional C=C and C-O-C groups. Also, SEM micrographs indicated strong interfacial bonding between the filler and the matrix, and good filler dispersion in the matrix, which accounted for relative improvement in mechanical properties. Hence, the developed periwinkle particulate-reinforced low-density polyethylene composite can be used for decorative purposes or in car interior design where high strength is not a critical requirement.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
V. D. Obasa, S. Okonkwo, O. A. Olanrewaju, S. O. Adeosun, O. Omotoso, and A. Omoolorun, “Physical and Mechanical Behaviours of Tympanotonus Fuscatus Reinforced Polyethylene”, AJERD, vol. 8, no. 1, pp. 278–291, Apr. 2025.
Section
Articles

References

Mark, U., Madufor, I., Obasi, H. & Mark, U. (2019). Influence of filler loading on the mechanical and morphological properties of carbonized coconut shell particles reinforced polypropylene composites. Journal of Composite Materials. 54. 002199831985607. 10.1177/0021998319856070.

Patel, R.V., Anshul Y., & Jerzy, W. (2023). Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications. Applied Sciences 13(8), 5126. https://doi.org/10.3390/app13085126.

Onuegbu, G. C., & Madufor, I. C. (2012). Effect of filler loadings on the end-use properties of maize tassel filled high density polyethylene. International Research Journal in Engineering, Science and Technology (IREJEST). 9(1), 2.

Borrero-López, A.M., Concepción. V., & José M. F. (2022). Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers 14(5), 881. https://doi.org/10.3390/polym14050881.

Laka, Marianna & Chernyavskaya, Svetlana & Shulga, Galia & Shapovalov, V. & Valenkov, Andrej & Tavroginskaya, Marina. (2011). Use of Cellulose-Containing Fillers in Composites with Polypropylene. Materials Science. 17. 10.5755/j01.ms.17.2.484.

Offiong, U.D., & Godwin, E.A. (2017). Assessment of physico-chemical properties of periwinkle shell ash as partial replacement for cement in concrete. International journal of scientific engineering and science 1, (7) 33-36.

Udo, M., Afolalu, S. A., Ikumapayi, O. M., Babalola, P., Obasa, V., & Akpalikpo, O. (2022). Effect of particle size and weight percentage variation on the mechanical properties of periwinkle shell reinforced polymer (epoxy resin) matrix composite. International Journal of Applied Science and Engineering, 19(3), 1-7.

Omah, A.D., Eze, H.U., Omah, E.C., Ude, S.N., Nwoke, O., Offor, P.O., Njoku, R.E. & Oji, E. (2023). The Effect of Filler Variation and Interfacial Behaviour on the Dielectric Performance of Snail Shell Particulate Polyester Composites. J. Mater. Environ. Sci., 14 (7), 750, 761.

Omisande, L. A. Onugba, M. A. (2020). Sustainable Concrete Using Periwinkle Shell as Coarse Aggregate – A Review: OSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) 17(6) 17-22. DOI: 10.990/1684-1706031722.

Adah, P.A., Nuhu, & A.S., Hassan, A. & Ubi, P. (2024). Characterization of periwinkle shell ash reinforced polymer composite for automotive application. 8 (1) 83 - 92. 10.33003/fjs-2024-0801-2158.

Fakayode, O. A. (2020). Size-based physical properties of hard-shell clam (Mercenaria mercenaria) shell relevant to the design of mechanical processing equipment. Aquacultural Engineering. 89. 102056. 10.1016/j.aquaeng.2020.102056.

Sasria, Nia. (2022). Composite Manufacturing of Coir Fiber-Reinforced Polyester as a Motorcycle Helmet Material. JMPM (Jurnal Material dan Proses Manufaktur). 6. 10.18196/jmpm.v6i1.13756.

Yadvinder. S., Jujhar, S., Shubham, S., Thanh-Danh, L. & Duc-Nam, N. (2020). Fabrication and characterization of coir/carbon-fiber reinforced epoxy based hybrid composite for helmet shells and sports-good applications: influence of fiber surface modifications on the mechanical, thermal and morphological properties. Journal of Materials Research and Technology, 9 (6), 15593-15603. https://doi.org/10.1016/j.jmrt.2020.11.023.

Bukar, A., Mohammed, A. & Hammajam, A. (2022). Development and Evaluation of the Mechanical Properties of Coconut Fibre-reinforced Low Density Polyethylene Composite. Open Journal of Composite Materials. 12. 83-97. 10.4236/ojcm.2022.123007.

Juárez-de la, R., Alejandra, B., Muñoz-Saldaña, J., Torres-Torres, D., Ardisson, P. & Alvarado-Gil, Juan. (2011). Nanoindentation characterization of the micro-lamellar arrangement of black coral skeleton. Journal of structural biology. 177. 349-57. 10.1016/j.jsb.2011.12.009.

Odili, C., Gbenebor, O., Adesola, O. & Adeosun, S. (2021). Characterization Of Polylactide (Pla) Composite Reinforced with Biowaste. Kufa Journal of Engineering. 12. 119-129. 10.30572/2018/Kje/120208.

Gbenebor, O. P., Akpan, E. I., & Adeosun, S. O. (2017). Thermal, structural and acetylation behavior of snail and periwinkle shells chitin. Progress in biomaterials, 6, 97-111.

Hajji, S., Turki, T. Boubakri, A., Ben A. M. & Mzoughi, N. (2017). Study of cadmium adsorption onto calcite using full factorial experiment design. Desalination and Water Treatment. 83. 222-233. 10.5004/dwt.2017.21079

Onuoha, C., Onyemaobip, O. Anyakwop, C., Onuegbup, G. & Onuegbu, G. (2017). Physical and Morphological Properties of Periwinkle Shell-Filled Recycled Polypropylene Composites. IJISET - International Journal of Innovative Science, Engineering & Technology, 4. (5), 2348 – 7968.

Morsch et al. Organic Chemistry (2020). Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org).

Shivasharana, C.T. & Sheetal, S.K. (2019). Physical and mechanical characterization of low-density polyethylene and high-density polyethylene. J Adv Sci Res 3, 30–34.

Ibrahim A. & Sylvester G. S. (2015). Assessment of Periwinkle Shells Ash as Composite Materials for Particle Board Production. International Conference on African Development Issues (CU-ICADI) Materials Teclmology Track 158-169.

Abutu, J.1., Lawal, S., A.1., Ndaliman, M. B.1., Lafia-Araga, R. A. & Abdulrahman A.S (2019). Effects of Particle Size Distribution on the Properties of Natural-Based Composite. International Journal of Engineering Materials and Manufacture 4(4) 170-177 https://doi.org/10.26776/ijemm.04.04.2019.05.3

Venkatesh, R. (2024). Synthesis and Behavior Study of Basalt Fiber-Made Low-Density Polyethylene Composites Via Injection Mold. J. Inst. Eng. India Ser. https://doi.org/10.1007/s40033-024-00727-3.

Adeosun S.O., Akpan E.I., & Akanegbu H.A. (2015). Thermo-mechanical Properties of Unsaturated Polyester Reinforced Coconut and Snail Shells. International Journal of Composite Materials 5(3): 52-64

Davies, I. E., & Adigio, E. M. (2022). Effect of Periwinkle Shell on the Physical and Mechanical Properties of Sandcrete Block. Nigerian Journal of Technological Research, 17(1), 46-54.

Elbishari, H., Silikas, N. & Satterthwaite, J. (2012). Filler size of resin-composites, percentage of voids and fracture toughness: Is there a correlation?. Dental materials journal. 31. 523-7. 10.4012/dmj.2011-256.

Satish, K., Shejkar, B. A., & Alok A., (2021). Effect of particle size on physical properties of epoxy composites filled with micro-size walnut shell particulates, Materials Today: Proceedings, 47(11), 2657-2661. https://doi.org/10.1016/j.matpr.2021.02.520.

Mishra, P., Pandey, C. M., Singh, U., Gupta, Anshul, S. & Chinmoy, K.A. (2019). Descriptive Statistics and Normality Tests for Statistical Data. Annals of Cardiac Anaesthesia 22(1), 67-72.| DOI: 10.4103/aca.ACA_157_18

Bhanu P.N. & Madhusudhan T. (2015). Investigative study on impact strength variation in different combination of polymer composites. International Journal of Engineering Research and General Science, 3, 306–312.

Akhyar, A.G., Masri, I., Fatlul, U. & Ahmad, F. (2024). The influence of different fibre sizes on the flexural strength of natural fibre-reinforced polymer composites, Results in Materials, 21. https://doi.org/10.1016/j.rinma.2024.100534

Shvkakumari, P. & Dibakar, B. (2017). Effect of red mud on mechanical and chemical properties of unsaturated polyester-epoxy-bamboo fiber composite. Mater Today: Proceeding 4(33),25-33

Bennerth, N.N. (2012). Microstructure And Mechanical Properties of Epoxy-Rice Husk Ash Composite | University of Nigeria, Nsukka Open Education Resources (OER).

Ofem, M. I. & Umar, M. (2012). Effect of filler content on the mechanical properties of periwinkle shell reinforced CNSL resin composites. ARPN Journal of Engineering and Applied Sciences, 7(2), 212-215.

Tazibt, N., Kaci, M., Dehouche, N., Ragoubi, M., & Atanase, L. I. (2023). Effect of filler content on the morphology and Physical Properties of Poly(Lactic Acid)-Hydroxyapatite Composites. Materials, 16(2), 809. https://doi.org/10.3390/ma160208.

Most read articles by the same author(s)