Effects of Moringa oleifera Tea Supplement on the Biochemical Indices of Diabetes and Hypertension Co-Morbidity Patients
Main Article Content
Abstract
Type 2 diabetes (T2D) and Hypertension are the most common co-morbidities which has received attention worldwide. This research investigates the effect of Moringa oleifera tea supplements (MOTs) on the biochemical parameters of diabetic and hypertensive co-morbidity patients. Twenty-five participants of both genders were randomly distributed into five groups containing five patients each; group 1 (positive control), group 2 (negative control), group 3 (positive control+MOT), group 4 (standard drug) and group 5 (standard drug+MOT). All treatments were carried out for 14 days after which blood samples were collected for biochemical analyses. The lipid biochemical profile, liver function parameters and renal function parameters of the patients were analysed using standard procedures. The study revealed that the consumption of MOTs significantly (p<0.01) increased
the serum high-density lipoproteins and reduced low-density lipoproteins, triglycerides, and cholesterol concentrations of the patients that were given MOT supplements in comparison to the control patients. Conversely, there was significant (p<0.01) reduction in the activities of serum alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, and the concentration of albumin, total protein, direct bilirubin and total bilirubin in comparison to the negative control group. Hence, this study outcome revealed that supplementing the diet of diabetes and hypertensive patients’ diet with MOTs is beneficial to the health of the patients and is equally safe for consumption.
Article Details
Authors hold the copyright of all published articles except otherwise stated.
References
Abolaji, A.O., Adebayo, H.A. and Odesanmi, O.S. (2007). Nutritional qualities of three medicinal plant parts (Xylopia aethiopica, Blighia sapida and Parinari polyandra) commonly used by pregnant women in the western part of Nigeria. Pakistan Journal of Nutrition, 6(6), 665-668. https://doi.org/10.3923/pjn.2007.665.668.
Adisakwattana, S. and Chanathong, B. (2011). Alpha-glucosidase inhibitory activity and lipid-lowering mechanisms of Moringa oleifera leaf extract. European Review for Medical and Pharmacological Sciences, 15(7), 803-8.
Al-Hajj, N.Q., Ahmed, A.H.A., Alabyadh, M., Naji, T. and Al-Hashedi, S.A. (2021). Study of lipid profile in diabetic patients and the effect of therapeutic intervention. World Journal of Pharmaceutical Research, 8(5), 72 – 85.
Alicic, R.Z., Neumiller, J.J., Johnson, E.J., Dieter, B. and Tuttle, K.R. (2019). Sodium–glucose cotransporter 2 inhibition and diabetic kidney disease. Diabetes, 68(2), 248-257. https://doi.org/10.2337/dbi18-0007
Asben, A., Rini, B. and Aini, L. (2019). The Different of Processing Method Against Polyphenol and Antioxidant Activity of Moringa Herbal Tea. In IOP Conference Series: Earth and Environmental Science (Vol. 327, No. 1, p. 012006). IOP Publishing. https://doi.org/10.1088/1755-1315/327/1/012006
Assmann, G., Jabs, H.U., Kohnert, U., Nolte, W. and Schriewer, H. (1984). LDL-cholesterol determination in blood serum following precipitation of LDL with polyvinylsulfate. Clinica Chimica Acta, 140(1), 77-83. https://doi.org/10.1016/0009-8981(84)90153-0
Azab, E.A. (2014). Hepatoprotective effect of sesame oil against lead induced liver damage in albino mice: Histological and biochemical studies. American Journal of BioScience, 2(6-2), pp.1-11. https://doi.org/10.11648/j.ajbio.s.2014020602.11.
Bao, Y., Xiao, J., Weng, Z., Lu, X., Shen, X. and Wang, F. (2020). A phenolic glycoside from Moringa oleifera Lam. improves the carbohydrate and lipid metabolisms through AMPK in db/db mice. Food Chemistry, 311, p.125948. https://doi.org/10.1016/j.foodchem.2019.125948
Bello, B.T. and Raji, Y.R. (2016). Knowledge, attitudes and beliefs of first-degree relatives of patients with chronic kidney disease toward kidney donation in Nigeria. Saudi Journal of Kidney Diseases and Transplantation, 27(1), 118. https://doi.org/10.4103/1319-2442.174141.
Burstein, M.S.H.R., Scholnick, H.R. and Morfin, R. (1970). Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. Journal of Lipid Research, 11(6), 583-595. https://doi.org/10.1016/s0022-2275(20)42943-8
Butler, A.R. (1975). The Jaffé reaction. Part II. A kinetic study of the Janovsky complexes formed from creatinine (2-imino-1-methylimazolidin-4-one) and acetone. Journal of the Chemical Society, Perkin Transactions 2, (8), 853-857. https://doi.org/10.1039/p29750000853
Castelli, W. P., Cooper, G. R., Doyle, J. T., Garcia-Palmieri, M., Gordon, T., Hames, C., Hudley, S. B., Kagan, A., Kuckmak, M., McGee, D. & Vicic, W. J. (1977). Distribution of triglyceride and total, LDL and HDL cholesterol in several populations: a cooperative lipoprotein phenotyping study. Journal of Chronic Diseases, 30(3), 147-169. https://doi.org/10.1016/0021-9681(77)90082-0
Chahil, T.J. and Ginsberg, H.N. (2006). Diabetic dyslipidemia. Endocrinology and Metabolism Clinics, 35(3), 491-510. https://doi.org/10.1016/j.ecl.2006.06.002
Chehade, J.M., Gladysz, M. and Mooradian, A.D. (2013). Dyslipidemia in type 2 diabetes: prevalence, pathophysiology, and management. Drugs, 73, 327-339. https://doi.org/10.1007/s12325-019-00941-6
Collin, P.F. and Diehl, H. (1959). Determination of uric acid. Justus Liebigs Annalen der Chemie, 31, 1862-1867.
De Ferranti, S.D., De Boer, I.H., Fonseca, V., Fox, C.S., Golden, S.H., Lavie, C.J., Magge, S.N., Marx, N., McGuire, D.K., Orchard, T.J. and Zinman, B. (2014). Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Circulation, 130(13), 1110-1130. https://doi.org/10.1161/CIR.0000000000000034
Debebe, M., Afework, M., Makonnen, E., Debella, A., Geleta, B. and Gemeda, N. (2017). Evaluations of biochemical, hematological and histopathological parameters of subchronic administration of ethanol extract of Albizia gummifera seed in Albino Wistar rat. Journal of Clinical Toxicology, 7(1), p.337. https://doi.org/10.4314/tjhc.v13i2.36693
Doumas, B.T., Watson, W.A. and Biggs, H.G. (1971). Albumin standards and the measurement of serum albumin with bromcresol green. Clinica Chimica Acta, 31(1), 87-96. https://doi.org/10.1016/0009-8981(71)90365-2
Elemosho, A.O., Irondi, E.A., Alamu, E.O., Ajani, E.O., Menkir, A. and Maziya-Dixon, B., (2021). Antioxidant and starch-hydrolyzing enzymes inhibitory properties of striga-resistant yellow-orange maize hybrids. Molecules, 26(22), 6874. https://doi.org/10.3390/molecules26226874.
Enemor, V.H. and Okaka, A.N. (2013). Sub-acute effects of ethanol extract of Sarcocephalus latifolius root on some physiologically important electrolytes in serum of normal Wistar albino rats. Pakistan Journal of Biological Sciences, 16(23), 1811-1814. https://doi.org/10.3923/pjbs.2013.1811.1814.
Evans, R.T. (1968). Manual and automated methods for measuring urea based on a modification of its reaction with diacetyl monoxime and thiosemicarbazide. Journal of Clinical Pathology, 21(4), 527-529. https://doi.org/10.1136/jcp.21.4.527
Gray, S.P. and Cooper, M.E. (2011). Alleviating the burden of diabetic nephropathy. Nature Reviews Nephrology, 7(2), 71-73. https://doi.org/10.1038/nrneph.2010.176.
Greten, H., Sniderman, A.D., Chandler, J.G., Steinberg, D. and Brown, W.V. (1974). Evidence for the hepatic origin of a canine post‐heparin plasma triglyceride lipase. Febs Letters, 42(2), 157-160. https://doi.org/10.1016/0014-5793(74)80775-1
Ian, M. (2017). The future of genomic medicine involves the maintenance of sirtuin 1 in global populations. International Journal of Molecular Biology Open Access, 2(1), 00013. DOI: 10.15406/ijmboa.2017.02.00013
Imo, C., Arowora, K.A., Ezeonu, C.S., Yakubu, O.E., Nwokwu, C.D., Azubuike, N.C. and Sallah, Y.G. (2019). Effects of ethanolic extracts of leaf, seed and fruit of Datura metel L. on kidney function of male albino rats. Journal of Traditional and Complementary Medicine, 9(4), 271-277. https://doi.org/10.1016/j.jtcme.2017.09.001.
Irondi, E.A., Oboh, G. Akindahunsi, A.A. (2016): Antidiabetic effects of Mangifera indica Kernel Flour‐supplemented diet in streptozotocin‐induced type 2 diabetes in rats. Food Science and Nutrition, 4(6), 828-839. https://doi.org/10.1002/fsn3.348
Jain, P.G., Patil, S.D., Haswani, N.G., Girase, M.V. and Surana, S.J. (2010). Hypolipidemic activity of Moringa oleifera Lam., Moringaceae, on high fat diet induced hyperlipidemia in albino rats. Revista Brasileira de Farmacognosia, 20, 969-973. https://doi.org/10.1590/s0102-695x2010005000038
Jaiswal, D., Rai, P.K., Mehta, S., Chatterji, S., Shukla, S., Rai, D.K., Sharma, G., Sharma, B. and Watal, G. (2013). Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pacific Journal of Tropical Medicine, 6(6), 426-432. https://doi.org/10.1016/s1995-7645(13)60068-1
Jendrassik, L. and Grof, P. (1938). Colorimetric method of determination of bilirubin. Biochemical Journal, 297(81), e2.
Kalegari, M., Gemin, C.A.B., Araújo-Silva, G., De Brito, N.J.N., López, J.A., de Oliveira Tozetto, S., das Graças Almeida, M., Miguel, M.D., Stien, D. and Miguel, O.G. (2014). Chemical composition, antioxidant activity and hepatoprotective potential of Rourea induta Planch.(Connaraceae) against CCl4-induced liver injury in female rats. Nutrition, 30(6), 713-718. https://doi.org/10.1016/j.nut.2013.11.004
Kattermann, R., Jaworek, D. and Möller, G. (1984). Multicentre Study of a New Enzymatic Method of Cholesterol Determination. Journal of Clinical Chemistry and Clinical Biochemistry, 22(3), 245-251. https://doi.org/10.1515/cclm.1984.22.3.245
Koh, K.H., Goh, C.C., Goh, S.C.P., Koh, Y.L.E. and Tan, N.C. (2020). Blood pressure goal attainment in multi-ethnic Asian patients with hypertension and dyslipidaemia in primary care. Singapore Medical Journal, 61(9), 469 - 475. https://doi.org/10.11622/smedj.2019102.
Lako, J., Trenerry, V.C., Wahlqvist, M., Wattanapenpaiboon, N., Sotheeswaran, S. and Premier, R. (2007). Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chemistry, 101(4), 1727-1741. https://doi.org/10.1016/j.foodchem.2006.01.031
Laleye, O. A. F., Azando, E. V. B., Olounlade, A. P., Tohouegnon, T., Laleye, A. and Ahissou, H. (2017). Evaluation of antihyperglycemic, antiradical and acute oral toxicity activities of aqueous leaves extract of Moringa oleifera Lam (Moringaceae) from Benin in normal rats. African Journal of Biotechnology, 16(27), 1513-1519. https://doi.org/10.5897/ajb2015.15088.
Lambe, M. O. and Bewaji, C. O. (2017). Protective role of Moringa oleifera leaf-based diet on protein-energy malnutrition induced skeletal muscle degeneration. International Journal of Scientific Reports, 3(2), 54-62. DOI: http://dx.doi.org/10.18203/issn.2454-2156.IntJSciRep20170358
Lopez-s, A., Vial, R., Balart, L. and Arroyave, G. (1974). Effect of exercise and physical fitness on serum lipids and lipoproteins. Atherosclerosis, 20(1), 1-9. https://doi.org/10.1016/0021-9150(74)90073-2
Mansour, M.A., Nagi, M.N., El‐Khatib, A.S. and Al‐Bekairi, A.M. (2002). Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and DT‐diaphorase in different tissues of mice: a possible mechanism of action. Cell Biochemistry and Function, 20(2), 143-151. https://doi.org/10.1002/cbf.968
Mbikay, M. (2012). Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: a review. Frontiers in Pharmacology, 3, 24. https://doi.org/10.3389/fphar.2012.00024
Mgbemena, N.M. and Obodo, G.A. (2016). Comparative Analysis of Proximate and mineral composition of Moringa oleifera root, leave and seed obtained in Okigwe Imo State, Nigeria. Journal of Molecular Studies and Medical Research, 1(2), 57-62. https://doi.org/10.18801/jmsmr.010216.07
Miao, G., Zhang, Y., Huo, Z., Zeng, W., Zhu, J., Umans, J.G., Wohlgemuth, G., Pedrosa, D., DeFelice, B., Cole, S.A. and Fretts, A.M. (2021). Longitudinal plasma lipidome and risk of type 2 diabetes in a large sample of American Indians with normal fasting glucose: The Strong Heart Family Study. Diabetes Care, 44(12), 2664-2672. https://doi.org/10.2337/dc21-0451
Morin, L.G. and Prox, J. (1973). Reduction of ferric phenanthroline—a procedure for determining serum uric acid. American Journal of Clinical Pathology, 60(5), 691-694. https://doi.org/10.1093/ajcp/60.5.691
Murray, I., Havel, P.J., Sniderman, A.D. and Cianflone, K. (2000). Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating protein. Endocrinology, 141(3), 1041-1049. https://doi.org/10.1210/endo.141.3.7364
Ogurtsova, K., da Rocha Fernandes, J.D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N.H., Cavan, D., Shaw, J.E. and Makaroff, L.E. (2017). IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 128, 40-50. https://doi.org/10.1016/j.diabres.2017.03.024
Oluduro, A.O. (2012). Evaluation of antimicrobial properties and nutritional potentials of Moringa oleifera Lam. leaf in South-Western Nigeria. Malaysian Journal of Microbiology, 8(2), 59-67. https://doi.org/10.21161/mjm.02912
Pedersen, T. R. (2001). Pro and con: low-density lipoprotein cholesterol lowering is and will be the key to the future of lipid management. The American Journal of Cardiology, 87(5), 8-12. https://doi.org/10.1016/S0002-9149(01)01449-7
Petrie, J.R., Guzik, T.J. and Touyz, R.M. (2018). Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Canadian Journal of Cardiology, 34(5), 575-584. https://doi.org/10.1016/j.cjca.2017.12.005
Philip, F. B., Boma, B. M. and Yahaya, Z. S. (2020). Preparation And Evaluation Of The Physicochemical And Stability Properties Of Three Herbal Tea Blends Derived From Four Native Herbs. Journal of Phytomedicine and Therapeutics, 19(2), 448–65. https://doi.org/10.4314/jopat.v19i2.2
Rec, G. S. (1972). Colorimetric method for serum alkaline phosphatase determination. Journal of Clinical Biochemistry, 10(2), 182 - 187.
Reitman, S. and Frankel S. (1957). Determination of serum glutamate oxaloacetate and glutamic pyruvic acid transaminase. American Journal of Clinical Pathology, 28, 56-66. https://doi.org/10.1016/0003-2697(65)90042-4
Schoenfeld, R.G. and Lewellan, C.J. (1964). A colorimetric method for determination of serum chloride. Clinical Chemistry, 10(6), pp.533-539. https://doi.org/10.1093/clinchem/10.6.533
Seidel, J., Hagele, E. O., Ziegenhorn, J. and Wahlefeld, A. W. (1983). Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency. Clinical Chemistry, 29(6), 1075-1080. https://doi.org/10.1093/clinchem/29.6.1075.
Sherlock, S. (1951). Liver disease (determination of total and direct bilirubin, colorimetric method). Churchill, London, 204.
Siasos, G., Tousoulis, D., Tsigkou, V., Kokkou, E., Oikonomou, E., Vavuranakis, M., Basdra, E.K., Papavassiliou, A.G. and Stefanadis, C. (2013). Flavonoids in atherosclerosis: an overview of their mechanisms of action. Current Medicinal Chemistry, 20(21), 2641-2660. https://doi.org/10.2174/0929867311320210003
Singh, S.N., Vats, P., Suri, S., Shyam, R., Kumria, M.M.L., Ranganathan, S. and Sridharan, K., (2001). Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. Journal of Ethnopharmacology, 76(3), 269-277. https://doi.org/10.1016/s0378-8741(01)00254-9
Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T. and Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673-24706. https://doi.org/10.3390/ijms161024673.
Spannella, F., Giulietti, F., Di Pentima, C. and Sarzani, R. (2019). Prevalence and control of dyslipidemia in patients referred for high blood pressure: the disregarded “double-trouble” lipid profile in overweight/obese. Advances in Therapy, 36, 1426-1437.
Tietz, N.W. (1976). Biuret method for the determination of total protein in serum In: Fundamental of clinical chemistry. WBS Saunders Co. Philadelphia, Toronto, London.
Trinder, P. (1951). A rapid method for the determination of sodium in serum. Analyst, 76(907), 596-599. https://doi.org/10.1039/an9517600596
Tripathy, J.P., Thakur, J.S., Jeet, G., Chawla, S. and Jain, S. (2017). Alarmingly high prevalence of hypertension and pre-hypertension in North India-results from a large cross-sectional STEPS survey. PloS one, 12(12), p.e0188619. https://doi.org/10.1371/journal.pone.0188619
Uhegbu, F.O., Imo, C. and Ifeanacho, N.G. (2015): Effect of exposure of male albino rats to kerosene, diesel and petrol on kidney function. International Research Journal of Environmental Sciences, 4, 12-18.
Vergara-Jimenez, M., Almatrafi, M.M. and Fernandez, M.L. (2017). Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants, 6(4), 91. https://doi.org/10.3390/antiox6040091.
Xiao, X., Erukainure, O.L., Sanni, O., Koorbanally, N.A. and Islam, M.S. (2020). Phytochemical properties of black tea (Camellia sinensis) and rooibos tea (Aspalathus linearis); and their modulatory effects on key hyperglycaemic processes and oxidative stress. Journal of Food Science and Technology, 57, 4345-4354. https://doi.org/10.1007/s13197-020-04471-w
Xu, C., Weng, Z., Zhang, L., Xu, J., Dahal, M., Basnet, T.B. and Gu, A. (2021). HDL cholesterol: A potential mediator of the association between urinary cadmium concentration and cardiovascular disease risk. Ecotoxicology and Environmental Safety, 208, 111433. https://doi.org/10.1016/j.ecoenv.2020.111433.
Yakubu, M.T., Bilbis, L.S., Lawal, M. Akanji, M.A. (2003). Evaluation of selected parameters of rat liver and kidney function following repeated administration of yohimbine. Biokemistri, 15(2), 50-56.
Zhang, T., Jeong, C.H., Cheng, W.N., Bae, H., Seo, H.G., Petriello, M.C. and Han, S.G. (2019). Moringa extract enhances the fermentative, textural, and bioactive properties of yogurt. LWT, 101, 276-284. https://doi.org/10.1016/j.lwt.2018.11.010