Phytochemical Components, Antioxidant and Antimicrobial Properties of Fermented Seeds of Foeniculum vulgare

Main Article Content

Mansurat Falana
Quadri Nurudeen

Abstract

Foeniculum vulgare (fennel) has been used in traditional medicine all over the world including Nigeria for a wide range of ailments. In the present study, the phytochemical analysis, antioxidant activities (by ABTS and DPPH methods), in vitro antimicrobial assays (against Staphylococcus aureus, Salmonella typhi, and Escherichia coli) using agar well diffusion method, and pH of the fermented seeds of F. vulgare were investigated. Phytochemical investigation showed the presence of tannins, terpenoids, phenols, phytosterols, alkaloids, and flavonoids. Alkaloid was absent on day 7 of the fermented seeds but was present on day 14. The antioxidant activity of the fermented sample of F. vulgare at day 14 was proportional to the concentration of the sample.
The zones of inhibition (in diameter) obtained were dependent on the tested concentrations (100%, 50% and 25%) and ranged between 5mm-18mm on day 7 and 6mm- 20mm on day 14 against the test pathogens. The trend of acidity increased with the days of fermentation. Hence, with the observed antimicrobial and antioxidant activities of the fermented seeds of F. vulgare, it can be considered a relatively safe agent with a long remarkable history in traditional medicine.

Article Details

How to Cite
Falana, M., & Nurudeen, Q. (2023). Phytochemical Components, Antioxidant and Antimicrobial Properties of Fermented Seeds of Foeniculum vulgare. ABUAD International Journal of Natural and Applied Sciences, 3(2), 36-41. https://doi.org/10.53982/aijnas.2023.0302.05-j
Section
Articles

References

Abou El-Soud, N., El-Laithy, N., El-Saeed, G., Wahby, M. S., Khalil, M., Morsy, F. and Shaffie, N. (2011). Antidiabetic activities of Foeniculum vulgare Mill. essential oil in streptozotocin-induced diabetic rats. Macedonian Journal of Medical Sciences (Archived), 4(2), 139-146.

Agriopoulou, S., Stamatelopoulou, E., Sachadyn-Król, M. and Varzakas, T. (2020). Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms, 8(6), 952.
https://doi.org/10.3390/microorganisms8060952

Anas, M., Eddine, H. J. and Mebrouk, K. (2008). Antimicrobial activity of Lactobacillus species isolated from Algerian raw goat's milk against Staphylococcus aureus. World J Dairy Food Sci, 3(2), 39- 49.

Anwar, F., Ali, M., Hussain, A. I. and Shahid, M. (2009). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare Mill.) seeds from Pakistan. Flavour and Fragrance Journal, 24(4), 170-176.
https://doi.org/10.1002/ffj.1929

Badgujar, S. B., Patel, V. V. and Bandivdekar, A. H. (2014). Foeniculum vulgare Mill: a review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed research international, 2014.
https://doi.org/10.1155/2014/842674

Banso, A. and Adeyemo, S. (2006). Phytochemical screening and antimicrobial assessment of Abutilon mauritianum, Bacopa monnifera and Datura stramonium. Biokemistri, 18 (1), 39- 44.
https://doi.org/10.4314/biokem.v18i1.56390

Baym, M., Stone, L. K. and Kishony, R. (2016). Multidrug evolutionary strategies to reverse antibiotic resistance. Science, 351(6268), aad3292.
https://doi.org/10.1126/science.aad3292

Brand-Williams, W., Cuvelier, M. E. and Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25- 30.
https://doi.org/10.1016/S0023-6438(95)80008-5

Broadbent, J. R., Larsen, R. L., Deibel, V. and Steele, J. L. (2010). Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. Journal of bacteriology, 192(9), 2445- 2458.
https://doi.org/10.1128/JB.01618-09

Cao, Z., Ma, J. and Shen, X. (2022). Alpinetin suppresses cell proliferation and metastasis in osteosarcoma by inhibiting PI3K/AKT and ERK pathways. Qual. Assur. Saf. Crops Foods, 14(2), 112-118.
https://doi.org/10.15586/qas.v14i2.1084

Cazarolli, L.H., Zanatta, L., Jorge, A.P., de Sousa, E., Horst, H., Woehl, V.M., Pizzolatti, M.G., Szpoganicz, B. and Silva, F.R.M.B., 2006. Follow-up studies on glycosylated flavonoids and their complexes with vanadium: their anti-hyperglycemic potential role in diabetes. Chemico- biological interactions, 163(3), pp.177-191.
https://doi.org/10.1016/j.cbi.2006.07.010

Cushnie, T. T., & Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International journal of antimicrobial agents, 38(2), 99-107.
https://doi.org/10.1016/j.ijantimicag.2011.02.014

de Almeida Júnior, W. L. G., da Silva Ferrari, Í., de Souza, J. V., da Silva, C. D. A., da Costa, M. M. and Dias, F. S. (2015). Characterization and evaluation of lactic acid bacteria isolated from goat milk. Food Control, 53, 96-103.
https://doi.org/10.1016/j.foodcont.2015.01.013

Ekwenye, U. N. and Elegalam, N. N. (2005). Antibacterial activity of ginger (Zingiber officinale Roscoe) and garlic (Allium sativum L.) extracts on Escherichia coli and Salmonella typhi. International Journal of Molecular Medicine and Advance Sciences, 1(4), 411-416.

Falana, M. B., Bankole, M. O., Omemu, A. M. and Oyewole, O. B. (2012). Antimicrobial potentials of some selected microorganisms associated with supernatant solution of fermented maize mash Omidun. Afri J Microbiol Res, 6, 19.
https://doi.org/10.5897/AJMR11.1099

Farooq, S. (2005). 555 medicinal plants. Field and laboratory manual (identification with its phytochemical and in vitro studies data). International book distributors.

Gaware, V., Kotade, K., Dolas, R., Dhamak, K., Somwanshi, S., Nikam, V., Khadse, A. and Kashid, V., 2011. The magic of kefir: a review. Pharmacology, 1, pp.376-386.

Gori, L., Gallo, E., Mascherini, V., Mugelli, A., Vannacci, A. and Firenzuoli, F. (2012). Can estragole in fennel seed decoctions really be considered a danger for human health? A fennel safety update. Evidence-Based Complementary and Alternative Medicine, 2012.
https://doi.org/10.1155/2012/860542

Guarner, F. and Schaafsma, G. J. (1998). Probiotics. International journal of food microbiology, 39(3), 237-238.
https://doi.org/10.1016/S0168-1605(97)00136-0

Gülçin, I., Topal, F., Çakmakçı, R., Bilsel, M., Gören, A. C. and Erdogan, U. (2011). Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). Journal of food science, 76(4), C585-C593.
https://doi.org/10.1111/j.1750-3841.2011.02142.x

Hoult, J. R. S. and Payá, M. (1996). Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. General Pharmacology: The Vascular System, 27(4), 713-722.
https://doi.org/10.1016/0306-3623(95)02112-4

Joshi, A., Bhobe, M., and Sattarkar, A. (2013). Phytochemical investigation of the roots of Grewia microcos Linn. J. Chem. Pharm. Res., 5(7), 80-87.

Kishore, N. and Verma, A. K. (2022). Foeniculum Vulgare Mill: Flavoring, Pharmacological, Phytochemical, and Folklore Aspects. In Medicinal Plants (pp. 77-91). Apple Academic Press.
https://doi.org/10.1201/9781003277408-4

Li, X., Liu, Z., Chen, Y., Wang, L. J., Zheng, Y. N., Sun, G. Z. and Ruan, C. C. (2009). Rubiacordone A: A new anthraquinone glycoside from the roots of Rubia cordifolia. Molecules, 14(1), 566-572.
https://doi.org/10.3390/molecules14010566

Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules, 22(8), 1255.
https://doi.org/10.3390/molecules22081255

Kooti, W., Moradi, M., Ali-Akbari, S., Sharafi-Ahvazi, N., Asadi-Samani, M. and Ashtary- Larky, D. (2015). Therapeutic and pharmacological potential of Foeniculum vulgare Mill: a review. Journal of HerbMed Pharmacology, 4(1), 1-9.

Ochei, J. O. and Kolhatkar, A. A. (2000). Medical laboratory science: theory and practice. McGraw Hill Education.

Papagianni, M. (2012). Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microbial cell factories, 11(1), 1-13.
https://doi.org/10.1186/1475-2859-11-50

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237.
https://doi.org/10.1016/S0891-5849(98)00315-3

Rios, J. L., and Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of ethnopharmacology, 100(1-2), 80-84.
https://doi.org/10.1016/j.jep.2005.04.025

Rollán, G. C., Gerez, C. L., and LeBlanc, J. G. (2019). Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Frontiers in Nutrition, 6, 98.
https://doi.org/10.3389/fnut.2019.00098

Tian, X. R., Feng, J. T., Ma, Z. Q., Xie, N., Zhang, J., Zhang, X. and Tang, H. F. (2014). Three new glycosides from the whole plant of Clematis lasiandra Maxim and their cytotoxicity. Phytochemistry Letters, 10, 168-172.
https://doi.org/10.1016/j.phytol.2014.09.004

Vieco-Saiz, N., Belguesmia, Y., Raspoet, R., Auclair, E., Gancel, F., Kempf, I. and Drider, D. (2019). Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in microbiology, 10, 57.
https://doi.org/10.3389/fmicb.2019.00057