Mondia whitei fruit extract abates cadmium chloride-induced nephrotoxicity via the suppression of oxidative stress in rats
Main Article Content
Abstract
Cadmium (Cd) is an industrial heavy metal that causes toxic effects to several body organs including the kidney. Medicinal plants are used in managing various diseases caused by environmental toxicants. This study aimed to evaluate the protective ability of Mondia whitei fruit extract (MWE) against nephrotoxicity induced by CdCl₂ exposure in Wistar rats. Twenty-five male Wistar rats of 90 to 130 g body weight (b.w) were used in this study. The animals were indiscriminately assigned to five groups of five animals per group. The control group were rats in group I, whereas group II to V rats were orally administered CdCl₂ (5 mg/kg body weight (b.w)) for 5 days. Simultaneously, the rats in group III to V were co-treated with 70 mg/kg b.w of silymarin, 250 and 500 mg/kg b.w of MWE, respectively. The CdCl2 significantly (p < 0.05) increased the levels of serum renal biomarkers such as urea and creatinine, total protein and albumin. Furthermore, a substantial (p < 0.05) elevation in the nitric oxide (NO) and malondialdehyde (MDA) levels, and a concomitant (p < 0.05) reduction in the kidney activities of superoxide dismutase (SOD) and glutathione transferase (GST), and the level of reduced glutathione (GSH) were observed in the CdCl2-intoxicated rats. Alterations in the kidney's histology were also noted. Nonetheless, treatment with MWE markedly returned to normal the levels of serum kidney parameters and tissue NO and MDA. In addition, the MWE significantly (p < 0.05) elevated tissue antioxidant levels and restored the kidney histology. The result of this study suggest that MWE could potentially serve as an alternative therapy in managing CdCl2-induced nephrotoxicity.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors hold the copyright of all published articles except otherwise stated.
References
Abdou, R. M., El-Maadawy, W. H., Hassan, M., El-Dine, R. S., Aboushousha, T., El-Tanbouly, N. D., & El-Sayed, A. M. (2021). Nephroprotective activity of Aframomum melegueta seeds extract against diclofenac-induced acute kidney injury: A mechanistic study. Journal of Ethnopharmacology, 273, 113939. https://doi.org/10.1016/j.jep.2021.113939
Adebayo, V. A., Adewale, O. B., Anadozie, S. O., Osukoya, O. A., Obafemi, T.O., Adewumi, D.F., Idowu, O.T., Onasanya, A., & Ojo, A. A. (2023). GC-MS analysis of aqueous extract of Nymphaea lotus and ameliorative potential of its biosynthesized gold nanoparticles against cadmium-induced kidney damage in rats. Heliyon, 9, e17124.
https://doi.org/10.1016/j.heliyon.2023.e17124
Adewale, O. B., Anadozie, S. O., Okpiri, R. T., Jaiyesimi, K. F., Owolabi, O. V., Akinlade, O., Obafemi, T.O., Osukoya, O.A., & Onasanya, A. (2023). Synthesized gold nanoparticles mediated by Crassocephalum rubens extract down-regulate KIM-1/NGAL genes and inhibit oxidative stress in cadmium-induced kidney damage in rats. Drug and Chemical Toxicology, 46, 1154-1161. https://doi.org/10.1080/01480545.2022.2138427
Adwas, A. A., Elsayed, A., Azab, A., & Quwaydir, F. (2019). Oxidative stress and antioxidant mechanisms in human body. Journal of Applied Biotechnology and Bioengineering, 6(1), 43-47. https://doi.org/10.15406/jabb.2019.06.00173
Akele, M. L., Desalegn, S. K., Asfaw, T. B., Assefa, A. G., Alemu, A. K., & de Oliveira, R. R. (2022). Heavy metal contents in bovine tissues (kidney, liver and muscle) from Central Gondar Zone, Ethiopia. Heliyon, 8, e12416. https://doi.org/10.1016/j.heliyon.2022.e12416
Anadozie, S. O., Adewale, O. B., Akawa, O. B., Olayinka, J. N., Osukoya, O. A., Umanah, M. M., Olaoye, O. A., & Oludoro, O. S. (2023). Protective effect of aqueous fruit extract of Mondia whitei against cadmium-induced hepatotoxicity in rats. Journal of Herbmed Pharmacology, 12, 159-167. https://doi.org/10.34172/jhp.2023.16
Anadozie, S. O., Akinyemi, J. A., Agunbiade, S., Ajiboye, B. O., & Adewale, O. B. (2018). Bryophyllum pinnatum inhibits arginase II activity and prevents oxidative damage occasioned by carbon tetrachloride (CCl4) in rats. Biomedicine & Pharmacotherapy, 101, 8-13. https://doi.org/10.1016/j.biopha.2018.01.156
Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in pharmacology, 12, 643972. https://doi.org/10.3389/fphar.2021.643972
Benzing, T., & Salant, D. (2021). Insights into glomerular filtration and albuminuria. New England Journal of Medicine, 384, 1437-1446. https://doi.org/10.1056/NEJMra1808786
Beutler, E. (1963). Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine, 61, 882-888.
Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6, e04691
https://doi.org/10.1016/j.heliyon.2020.e04691
Carlström, M. (2021). Nitric oxide signalling in kidney regulation and cardiometabolic health. Nature Reviews Nephrology, 17, 575-590. https://doi.org/10.1038/s41581-021-00429-z
Chai, Y.-C., & Mieyal, J. J. (2023). Glutathione and Glutaredoxin-Key Players in Cellular Redox Homeostasis and Signaling. Antioxidants, 12, 1553. https://doi.org/10.3390/antiox12081553
Forman, H. J., & Zhang, H. (2021). Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20(9), 689-709.
https://doi.org/10.1038/s41573-021-00233-1
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17, 3782. https://doi.org/10.3390/ijerph17113782
Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry, 126, 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
Habig, W. H., & Jakoby, W. B. (1981). [27] Glutathione S-transferases (rat and human) Methods in enzymology. Elsevier, 77, 218-231. https://doi.org/10.1016/S0076-6879(81)77029-0
Hayat, M. T., Nauman, M., Nazir, N., Ali, S., & Bangash, N. (2019). Environmental hazards of cadmium: past, present, and future Cadmium toxicity and tolerance in plants. Elsevier, 163-183. https://doi.org/10.1016/B978-0-12-814864-8.00007-3
Huang, Y., Wang, Y., Xu, J., Feng, J., & He, X. (2020). Propacin, a coumarinolignoid isolated from durian, inhibits the lipopolysaccharide-induced inflammatory response in macrophages through the MAPK and NF-κB pathways. Food & function, 11, 596-605.
https://doi.org/10.1039/C9FO02202C
Imenez Silva, P. H., & Mohebbi, N. (2022). Kidney metabolism and acid-base control: back to the basics. Pflügers Archiv-European Journal of Physiology, 474, 919-934.
https://doi.org/10.1007/s00424-022-02696-6
Iserhienrhien, L.O., & Okolie, N.P. (2022). Protective effect of Geophila obvallata (Shumach) Didr leaf extract and its fractions against cadmium-induced nephrotoxicity in male Wistar rats. Toxicology Reports, 9, 87-93. https://doi.org/10.1016/j.toxrep.2021.12.008
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22, 4642. https://doi.org/10.3390/ijms22094642
Khan, M. A., Kassianos, A. J., Hoy, W. E., Alam, A. K., Healy, H. G., & Gobe, G. C. (2022). Promoting plant-based therapies for chronic kidney disease. Journal of Evidence-Based Integrative Medicine, 27, https://doi.org/10.1177/2515690X221079688
Kellum, J. A., Romagnani, P., Ashuntantang, G., Ronco, C., Zarbock, A., & Anders, H.-J. (2021). Acute kidney injury. Nature Reviews Disease Primers, 7, 1-17.
https://doi.org/10.1038/s41572-021-00284-z
Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: a review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388
Lee, J. (2008). Nitric oxide in the kidney: its physiological role and pathophysiological implications. Electrolytes & Blood Pressure: E & BP, 6, 27-34. https://doi.org/10.5049/EBP.2008.6.1.27
Luft, F. C. (2021). Biomarkers and predicting acute kidney injury. Acta Physiologica, 231, e13479. https://doi.org/10.1111/apha.13479
Mandal, P. K., Roy, R. G., & Samkaria, A. (2022). Oxidative Stress: Glutathione and Its Potential to Protect Methionine-35 of Aβ Peptide from Oxidation. Acs Omega, 7, 27052-27061. https://doi.org/10.1021/acsomega.2c02760
Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247, 3170-3175. https://doi.org/10.1016/S0021-9258(19)45228-9
Moody, E. C., Coca, S. G., & Sanders, A. P. (2018). Toxic metals and chronic kidney disease: a systematic review of recent literature. Current Environmental Health Reports, 5, 453-463. https://doi.org/10.1007/s40572-018-0212-1
Obasi, P. N., & Akudinobi, B. B. (2020). Potential health risk and levels of heavy metals in water resources of lead-zinc mining communities of Abakaliki, southeast Nigeria. Applied Water Science, 10, 1-23. https://doi.org/10.1007/s13201-020-01233-z
Oketch-Rabah, H. A. (2012). Mondia whitei, a medicinal plant from Africa with aphrodisiac and antidepressant properties: a review. Journal of Dietary Supplements, 9, 272-284. https://doi.org/10.3109/19390211.2012.726704
Patra, R., Rautray, A. K., & Swarup, D. (2011). Oxidative stress in lead and cadmium toxicity and its amelioration. Veterinary Medicine International, 2011, 457327
https://doi.org/10.4061/2011/457327
Pereira, A. S., Den Haan, H., Peña-García, J., Moreno, M. M., Pérez-Sánchez, H., & Apostolides, Z. (2019). Exploring African medicinal plants for potential anti-diabetic compounds with the DIA-DB inverse virtual screening web server. Molecules, 24(10), 2002.
https://doi.org/10.3390/molecules24102002
Poosa, M., & Vanapatla, S. R. (2020). Protective effect of Antigonon leptopus (Hook et. Arn) in cadmium induced hepatotoxicity and nephrotoxicity in rats. Clinical Phytoscience, 6, 32. https://doi.org/10.1186/s40816-020-00181-0
Prozialeck, W. C., & Edwards, J. R. (2012). Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. Journal of Pharmacology and Experimental Therapeutics, 343, 2-12.
https://doi.org/10.1124/jpet.110.166769
Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A.-a. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine, 8(3), 135.
Raoufinia, R., Mota, A., Keyhanvar, N., Safari, F., Shamekhi, S., & Abdolalizadeh, J. (2016). Overview of albumin and its purification methods. Advanced pharmaceutical bulletin, 6(4), 495. https://doi.org/10.15171/apb.2016.063
Rathi, N., Harwalkar, K., Jayashree, V., Sharma, A., & Rao, N. N. (2017). 2-hydroxy-4-methoxybenzaldehyde, an astounding food flavoring metabolite: A review. Asian Journal of Pharmaceutical and Clinical Research, 10, 105-110. https://doi.org/10.22159/ajpcr.2017.v10i10.19729
Satarug, S., C. Gobe, G., A. Vesey, D., & Phelps, K. R. (2020). Cadmium and lead exposure, nephrotoxicity, and mortality. Toxics, 8, 86. https://doi.org/10.3390/toxics8040086
Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P.V., Azzini, E., & Peluso, I. (2020). Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11, 694. https://doi.org/10.3389/fphys.2020.00694
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 1, 217037. https://doi.org/10.1155/2012/217037
Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical biochemistry, 47, 389-394.
https://doi.org/10.1016/0003-2697(72)90132-7
Sujana, D., Saptarini, N. M., Sumiwi, S. A., & Levita, J. (2021). Nephroprotective activity of medicinal plants: A review on in silico-, in vitro-, and in vivo-based studies. Journal of Applied Pharmaceutical Science, 11(10), 113-127. https://doi.org/10.7324/JAPS.2021.1101016
Taiwo, B. J., Osasan, J. Y., Olubiyi, O. O., Oyemitan, I. A., Atoyebi, S. A., Elsegood, M. R., & Jones, R. C. (2017). Isolation of novel para-pentyl phenyl benzoate from Mondia whitei.(Hook. F.) skeels (periplocaceae), its structure, synthesis and neuropharmacological evaluation. African Journal of Traditional, Complementary and Alternative Medicines, 14, 219-230. https://doi.org/10.21010/ajtcam.v14i1.24
Udupa, V., & Prakash, V. (2019). Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats. Toxicology Reports, 6, 91-99.
https://doi.org/10.1016/j.toxrep.2018.11.015
Ugwah-Oguejiofor, C. J., Okoli, C. O., Ugwah, M.O., Umaru, M.L., Ogbulie, C.S., Mshelia, H.E., Umar, M., & Njan, A. A. (2019). Acute and sub-acute toxicity of aqueous extract of aerial parts of Caralluma dalzielii NE Brown in mice and rats. Heliyon, 5, e01179.
https://doi.org/10.1016/j.heliyon.2019.e01179
Varshney, R., & Kale, R. (1990). Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes. International Journal of Radiation Biology, 58, 733-743. https://doi.org/10.1080/09553009014552121