AI-Powered Platforms for Interactive Nutrition Education Based on WHO (World Health Organization) Guidelines – An Overview

Main Article Content

Taiwo Folake Ojo
https://orcid.org/0009-0009-9516-0325
Oluwaseyi Abiodun Akpor
Yetunde Justinah Talabi
Adeniran Sunday Afolalu

Abstract

Malnutrition is still a major worldwide health issue; hence creative methods of nutrition teaching are required. The transformational potential of artificial intelligence (AI)-powered platforms to provide individualized and interactive nutrition education in line with World Health Organization (WHO) guidelines is examined in this paper. It explores how AI improves engagement through gamification and virtual coaching, makes tailored dietary suggestions based on individual needs and tastes, and offers data-driven feedback for tracking success. The study looks at how well these platforms match WHO nutritional guidelines and considers the advantages—like higher engagement and better memory retention—as well as the drawbacks—like data privacy, algorithmic bias, and unequal access. Additionally, it investigates how AI improves user engagement through interactive features like gamification, chatbots that employ natural language processing to provide individualized virtual coaching, and dynamic feedback systems for behavior reinforcement and progress monitoring. To show how these AI-driven platforms can encourage adherence to evidence-based guidelines for balanced diets, appropriate nutrient intake, and the prevention of diet-related non-communicable diseases, the report explores the critical alignment of these platforms with specific WHO dietary recommendations. This study critically examines the associated challenges, including worries about data privacy and security, the possibility of algorithmic bias, the need for fairness and equity in AI-driven recommendations, and the crucial issue of ensuring equitable access to these technologies across diverse populations, addressing the digital divide, in addition to the advantages of increased user engagement and improved knowledge retention

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
T. F. Ojo, O. A. Akpor, Y. J. Talabi, and A. S. Afolalu, “AI-Powered Platforms for Interactive Nutrition Education Based on WHO (World Health Organization) Guidelines – An Overview”, AJERD, vol. 8, no. 1, pp. 161–168, Mar. 2025.
Section
Articles

References

Koebe, P. (2025). International Journal of Information How digital technologies and AI contribute to achieving the health-related SDGs, Int. J. Inf. Manag. Data Insights, 5 (1), 100298. doi: 10.1016/j.jjimei.2024.100298.

Poupi, T. Armand, T., Nfor, K. A., Kim, J., & Kim, H. (2024). Applications of Artificial Intelligence , Machine Learning , and Deep Learning in Nutrition : A Systematic Review, 1–24.

Janssen, S. M. W., Bouzembrak, Y., & Tekinerdogan, B. (2024). Artificial Intelligence in Malnutrition : A Systematic Literature Review, Adv. Nutr., 15(9), 100264. doi: 10.1016/j.advnut.2024.100264.

Sharma, S. K. R. (2024). International Journal for Research Publication and Seminar Optimizing Nutritional Outcomes : The Role of AI in Personalized Diet Planning,. 15(2), 107–116, 2024.

Murray, E. K., Auld, G., Inglis-widrick, R., & Baker, S. (2010). Report Nutrition Content in a National Nutrition Education Program for Low-Income Adults : Content Analysis and Comparison With the 2010 Dietary Guidelines for Americans. J. Nutr. Educ. Behav., 47(6), 566-573.e1. doi: 10.1016/j.jneb.2015.09.002.

Tsolakidis, D. Gymnopoulos, L. P., & Kosmas, D. (2024). Artificial Intelligence and Machine Learning Technologies for Personalized Nutrition: A Review. 11(3), 62. doi,org/10.3390/informatics11030062.

Alghamdi, M. M., Burrows, T., Barclay, B., Baines, S., & Chojenta, C. (2023). Culinary Nutrition Education Programs in Community-Dwelling Older Adults : A Scoping Review. JNHA, 27(2), 142–158. doi: 10.1007/s12603-022-1876-7.

Patel, J. Hung, C., & Reddy, T. (2024). Evaluating predictive artificial intelligence approaches used in mobile health platforms to forecast mental health symptoms among youth : a systematic review. Psychiatry Res., 343(116277). doi: 10.1016/j.psychres.2024.116277.

Zhang, M. & Kim, R. (2024). Scope of public health workforce : an exploratory analysis on World Health Organization policy and the literature. Glob. Heal. J., 8(4), 153–161. doi: 10.1016/j.glohj.2024.11.004.

Thoonsen A. C., Schoten, S. M., Merten, H., Beusekom, I. V., Schoomade, L. J., Delnoij, D. M. J.& Bruijne, M.C. (2024). Health policy Stimulating implementation of clinical practice guidelines in hospital care from a central guideline organization perspective : A systematic review, Health Policy (New. York), 148, 105135. doi: 10.1016/j.healthpol.2024.105135.

Duke, T. AlBuhairan, F.S., Agarwai, K., Arora, N. K., Arulkumaran,, S., Bhutta, Z,A., Binka, F., Castro, A., Claeson, M., Dao, B., Darmstadt, G. L., English, M., Jardali, F., Merson, M., Ferrand, R. A., Golden, A., Golden, M. H., Homer, C., Jehan, F., Kabiru, C. W., Kirkwood, B., Lawn, J. E., Li, S., Patton, G. C., Ruel, M., Sandall, J., Sachdev, H. S., Tomlinson, M., Waiswa, P., Walker, D. & Zlotkin, S. (2022). World Health Organization and knowledge translation in maternal , newborn , child and adolescent health and nutrition. 2021. doi: 10.1136/archdischild-2021-323102.

Detopoulou, P. Voulgaridou, G., Moschos, P., Levidi, D., Anastasiou, T., Dedes, V., Diplari, E., Fourfouri, N., Giaginis, C., Panoutsopoulos, G. I. & Papadopoulou, S. (2023). Artificial intelligence, nutrition, and ethical issues: A mini- review,” Clin. Nutr. Open Sci., 50, 46–56. doi: 10.1016/j.nutos.2023.07.001.

Nogueira-rio, N. Vazquez, L. V., Lopez-santamarina, A., Mondragon-portocarrero, A., Karav, S., & Miranda, J. M. (2024). Mobile Applications and Artificial Intelligence for Nutrition Education : A Narrative Review. 483–503.

Han M. & Chen, J. (2024). NutrifyAI : An AI-Powered System for Real-Time Food Detection , Nutritional Analysis , and Personalized Meal Recommendations.

Nahar, S. (2023). Technological Forecasting & Social Change Modeling the effects of artificial intelligence ( AI ) -based innovation on sustainable development goals (SDGs): Applying a system dynamics perspective in a cross-country setting, Technol. Forecast. Soc. Chang., 201, 123203, doi: 10.1016/j.techfore.2023.123203.

Fonseca, D. C., Fernandes, R., & Waitzberg, D. L. (2024). Artificial Intelligence and Human Microbiome: A brief narrative review, Clin. Nutr. Open Sci. 9, 134-142. doi: 10.1016/j.nutos.2024.12.009.

Harsha, S. Syed, J., Ramesh, M., Patil, V., & Kumar, T. M. P., (2023). Exploratory Research in Clinical and Social Pharmacy Artificial intelligence in the field of pharmacy practice : A literature review, Explor. Res. Clin. Soc. Pharm., 12, 100346. doi: 10.1016/j.rcsop.2023.100346.

Kleine, A. Kokje, E., Hummelsberger, P., Lermer, E., I. Schaffernak, I., & Gaube, S. (2023). AI-enabled clinical decision support tools for mental healthcare : A product review. Artif. Intell. Med., 160, 103052, 2025. doi: 10.1016/j.artmed.2024.103052.

Bhatt, R. Hossain, A., Majumder, D., Chandra, M. S., Ghimire, R., Shahzad, M. S., Verma, K.K., Riar, A.S., Rajput, V.D., Oliveira, M. W., Nisi, A., Almalki, R.S., Barek, V., Brestic, M. & Maitra, S. (2024). Prospects of artificial intelligence for the sustainability of sugarcane production in the modern era of climate change : An overview of related global findings,” 18. doi: 10.1016/j.jafr.2024.101519.

Deniz-garcia A. (2022). Quality, Usability and Effectiveness of mHealth Applications and the Role of Artificial Intelligence : Current Scenario and Challenges Table of Contents. 4;25:e44030. d0i:10.2196/44030.

Augusto, O. S., Vilson, S., Marcio, M., Luis, S. R., Jhon, L.B., Marcos, V., Joao, P. B., Lorena, N. L., Rhuanito, S.F., & Henrique, F.E. (2024). Artificial Intelligence Applied to Support Agronomic Decisions for the Automatic Aerial Analysis Images Captured by UAV : A Systematic Review Artificial Intelligence Applied to Support Agronomic Decisions for the Automatic Aerial Analysis Images Captured by UAV : A Systematic Review. 11, 2697.doi: 10.3390/agronomy14112697.

Chilaka, O. (2024). AI and Education : Transforming Learning in the Digital Age. July, 8–10.

Aries M., & Navratilova, H., F. (2018). THE DEVELOPMENT OF TEACHING GUIDELINE AND INTERACTIVE NUTRITION EDUCATION MODULE FOR PRIMARY SCHOOL TEACHERS, 1. (28), doi: 10.33068/iccd.

Rathika, P. Yamunadevi, S., Ponni, P., Parthipan, V., & Anju, P. (2024). Developing an AI-Powered Interactive Virtual Tutor for Enhanced Learning Experiences, 10(4). 1594–1600. doi: 10.22399/ijcesen.782.

Ali, S. H., Rahman, F., Kuwar, A., Khanna, T., Nayak, A., Sharma, P., Dasraj, S., Auer, S., Rouf, R., Patel, T., & Dhar, B. (2023). Rapid tailored dietary and health education through a social media chatbot micro-intervention : development, implementation, and practical recommendations Table of Contents. 9;8:e52032.

Liu S. & Guo, L. (2024). Data Ownership in AI-Powered Integrative Healthcare Landscape Table of Contents. 19;12: e57754. doi: 10.2196/57754.

Messina, A. Amati, R., Annoni, A. M., Bano, B., & Albanese, E. (2024). Culturally Adapting the World Health Organization Digital Intervention for Family Caregivers of People With Dementia ( iSupport ): Community-Based Participatory Approach Corresponding Author, 24:8:. doi: 10.2196/46941.

Abdallah, S. Godwins, O. P., & Ijiga, A., C. (2024). AI-powered nutritional strategies : Analyzing the impact of deep learning on dietary improvements in South Africa, India, and the United States. 11(02), 320-345. doi.org/10.30574/msarr.2024.11.2.0125.

Most read articles by the same author(s)