In-Silico Investigation of Chromolaena Odorata (L.) against Methicillin Resistant Staphylococcus Aureus

Main Article Content

P. O. DEBO-AJAGUNNA
https://orcid.org/0009-0008-7113-9794
A. O. OBAJULUWA
E. A. AGBEBI
P. A. OKIKI

Abstract

Globally, approximately 2 billion individuals are estimated to carry Staphylococcus aureus (S. aureus), with around 53 million harbouring the Methicillin-Resistant Staphylococcus aureus (MRSA) strain. The widespread resistance of staphylococcal infections to β-lactam antibiotics, including penicillin, poses significant challenges to the treatment of MRSA infections. The mechanism of β-lactam antibiotics involves inhibition of the transpeptidase activity of penicillin
binding proteins (PBPs), crucial for bacterial cell wall synthesis. However, MRSA strains evade this inhibition through the mecA gene, which encodes PBP2a. This protein facilitates peptidoglycan crosslinking even in the presence of β lactam antibiotics, ensuring bacterial survival. Targeting PBP2a has emerged as a promising therapeutic strategy against MRSA. The mecA gene transcription confers methicillin resistance by enabling cell wall biosynthesis despite β-lactam
presence, leading to drug resistance and membrane degradation. This highlights the need for novel interventions in combating MRSA infections. Plants contain numerous phytochemical constituents, many of which are biologically active and responsible for a variety of pharmacological activities.

Downloads

Download data is not yet available.

Article Details

How to Cite
DEBO-AJAGUNNA, P. O., OBAJULUWA, A. O., AGBEBI , E. A., & OKIKI, P. A. (2025). In-Silico Investigation of Chromolaena Odorata (L.) against Methicillin Resistant Staphylococcus Aureus. ABUAD International Journal of Natural and Applied Sciences, 5(2), 162–169. https://doi.org/10.53982/aijnas.2025.0502.10-j
Section
Articles

References

Alabi, O. T., Adelaja, A. J., & Ojo, S. K. (2019). Phytochemical screening and antimicrobial activity of Chromolaena odorata leaf extracts against selected pathogens. Journal of Applied Sciences and Environmental Management, 23(3), 455–460.

Alara, O. R., & Nour, A. H. (2019). Chromolaena odorata L.: A review of its ethnomedicinal uses, phytochemistry, and biological activities. Journal of Medicinal Plants Research, 13(10), 211–224. Alzahrani, A. J., Al-Ghamdi, S., Al-Sanie, W. F., Al Malki, A. L., & Al-Amri, A. S. (2024). Targeting PBP2a in MRSA: Molecular insights into the inhibitory potential of phytochemicals and allosteric modulation. https://doi.org/10.3390/antibiotics13020145.

Amedei, A., & Niccolai, E. (2014). Plant and marine sources: Biological activity of natural products and therapeutic use. In S. P. Sarker & L. Nahar (Eds.), Natural products analysis: 145. Instrumentation, methods, and applications (pp. 43–113).

Wiley. Benko-Iseppon, A. M., Galdino, S. L., Calsa, T., Kido, E. A., Tossi, A., Belarmino, L. C., & Crovella, S. (2010). Overview on plant antimicrobial peptides. Current Protein & Peptide Science, 11(3), 181–188.

Bouley, R., Kumarasiri, M., Peng, Z., Galán, B., Lastochkin, E., Antunes, W., ... & Mobashery, S. (2015). Discovery of oxadiazole-based-antibiotics with activity against methicillin-resistant Staphylococcus aureus (MRSA). Journal of the American Chemical Society, 137(5), 1738–1741.

Bush, K. (2018). Past and present perspectives on β lactamases. Antimicrobial Agents and Chemotherapy, 62(10), e01076-18.

Chowdhury, A. R. (2002). Essential oils of the leaves of Eupatorium odoratum L. from Shillong (N. E.). Journal of Essential Oil Research, 14(1), 14–18.

Dinparast, L., Hemmati, S., & Alizadeh, A. (2016). Molecular docking studies of some natural compounds as inhibitors of β-lactamase. Journal of Reports in Pharmaceutical Sciences, 5(2), 114–121.

Egan, A. J., Errington, J., & Vollmer, W. (2017). Regulation of peptidoglycan synthesis and remodelling. Nature Reviews Microbiology, 18(8), 446–460. Fatema, K. (2013). Ethnomedicinal uses and phytochemical analysis of Chromolaena odorata. International Journal of Pharmaceutical Science and Research, 4(12), 4615–4621.

Fergestad, M. E., Stamsås, G. A., Morales Angeles, D., Salehian, Z., Wasteson, Y., & Kjos, M. (2020). Penicillin-binding protein PBP2a provides variable levels of protection toward different β-lactams in Staphylococcus aureus RN4220. MicrobiologyOpen, 9(8), e1057. https://doi.org/10.1002/mbo3.1057.

Fishovitz, J., Hermoso, J. A., Chang, M., & Mobashery, S. (2014). Penicillin-binding protein 2a of methicillin resistant Staphylococcus aureus. IUBMB Life, 66(8), 572–577. https://doi.org/10.1002/iub.1289.

Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus: Current status and future prospects. FEMS Microbiology Reviews, 41(3), 430 449. Foster, T. J. (2019). Can β-lactam antibiotics be resurrected to combat MRSA? Trends in Microbiology, 27(1), 26–38.

Goel, G., Hujer, A. M., Adams, M. D., Marshall, S. H., & Bonomo, R. A. (2021). The challenge of β-lactam resistance in Staphylococcus aureus. Journal of Clinical Microbiology, 59(4), e02015-20. Heiss, S. T., Alara, O. R., & Nour, A. H. (2014). Invasive plants: A global perspective on Chromolaena odorata. Biological Invasions, 16, 233–245.

Kikiowo, B., Iwaloye, O., & Ibeji, C. U. (2020). Molecular docking and dynamics simulation of some selected phytochemicals as inhibitors of MRSA. Journal of Biomolecular Structure and Dynamics, 38(14), 4210–4220.

Kim, C., Chen, M., Mobashery, S., & Chang, M. (2012). A new class of antibiotics with a novel mechanism of action against MRSA. Journal of the American Chemical Society, 134(50), 20310–20313.

Lalith, G. (2009). Invasive plants: A guide to the identification of the most invasive plants of Sri Lanka (pp. 116–117).

Colombo Wildlife Trust. Lin, L. L., Shan, J. J., Xie, T., Xu, J. Y., Shen, C. D., Di, L. Q., & Cheng, Y. Y. (2016). Application of traditional Chinese medical herbs in prevention and treatment of respiratory syncytial virus. Evidence Based Complementary and Alternative Medicine, 2016, Article 6082729. https://doi.org/10.1155/2016/6082729.

Long, S. W., Williams, D., & Olsen, R. J. (2014). Mechanisms of resistance to ceftaroline in MRSA. Antimicrobial Agents and Chemotherapy, 58(7), 3811–3817.

Madahi, H., Rostami, F., Rahimi, F., & Dehkordi, F. S. (2014). Prevalence of Staphylococcus aureus in raw milk and dairy products. Journal of Food Quality and Hazards Control, 1, 113–117. Mohammad, A. (2023). PyMOL software for molecular visualization in drug discovery. Journal of Computer-Aided Molecular Design, 37, 1–12.

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2008). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.

Muniappan, R., Reddy, G. V. P., & Lai, P. Y. (2005). Chromolaena odorata: A weed of global importance. WSSA Abstracts, 45, 124. Nauta, R. P., Wang, J., & Siezen, R. J. (2021). Computational analysis of protein-ligand interactions in PBP2a. Bioinformatics, 37(10), 1432–1440. Nesom, G. L. (2006). Chromolaena odorata. In Flora of North America Editorial Committee (Ed.), Flora of North America North of Mexico (Vol. 21). Oxford University Press. https://www.efloras.org. Nkechinyere, O., & Chioma, O. (2020). Antimicrobial screening of Chromolaena odorata extracts. Journal of Medicinal Plants, 8(4), 101–107. Ogunwande, I. A., Avoseh, O. N., & Flamini, G. (2018). Chemical composition and biological activities of essential oils from Chromolaena odorata. Natural Product Communications, 13(7), 891–894. Okwu, D. E., & Ighodaro, O. M. (2014). Phytochemical composition and biological activities of Chromolaena odorata. American Journal of Plant

Olatunde, A., Mohammed, A., & Ibrahim, M. A. (2022). Mechanisms of β-lactam resistance in Staphylococcus aureus. Frontiers in Microbiology, 13, 821543.

Omeke, C. P., Eze, E. I., & Onyeke, C. C. (2019). Phytochemical and antimicrobial properties of Chromolaena odorata. Journal of Ethnopharmacology, 241, 111974.

Omotuyi, O. I., Nash, O., & Ajiboye, B. O. (2018). Molecular docking of phytochemicals from Chromolaena odorata against bacterial targets. Phytomedicine, 46, 120–128.

Otero, L. H., Rojas-Altuve, A., & Hermoso, J. A. (2013). How ceftaroline opens the allosteric site of PBP2a. Proceedings of the National Academy of Sciences, 110(42), 16808–16813. Putri,

D. A., & Fatmawati, S. (2019). A new flavanone as a potent antioxidant isolated from Chromolaena odorata L. leaves. Evidence-Based Complementary and Alternative Medicine, 2019, Article 1453612. https://doi.org/10.1155/2019/1453612. Queenan,

A. M., Shang, W., Kania, M., Page, M. G., & Bush, K. (2007). Interactions of ceftobiprole with beta-lactamases from molecular classes A to D. Antimicrobial Agents and Chemotherapy, 51(9), 3089–3095. https://doi.org/10.1128/AAC.00218-07.

Radulovic, N. S. (2013). Secondary metabolites and antimicrobial action in Chromolaena odorata. Natural Product Research, 27(12), 1101–1105.

Rofida, S. (2015). Chemical compounds in Chromolaena odorata extracts and their antimicrobial properties. Pharma Science Monitor, 6(2), 45–52. Rose, W. E., & Rybak, M. J. (2018). Allosteric modulation of PBP2a: A new frontier in MRSA treatment. Expert Review of Anti-infective Therapy, 16(4), 281 290.

Sangeetha, K., & Santhosh, K. (2013). Prevalence of MRSA globally and its impact on healthcare. International Journal of Current Microbiology and Applied Sciences, 2(10), 45–52.

Sangeetha, K., & Santhosh, K. (2020). Methicillin resistant Staphylococcus aureus: An update on resistance mechanisms. Journal of Applied Biology, 8(1), 12–19. Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with AutoDock Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422.

Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2(5), a000414. https://doi.org/10.1101/cshperspect.a000414. Sudhakar, P., & Ramesh, M. (2023). Common names and distribution of Chromolaena odorata. International Journal of Botany, 19, 56–62.

Sukanya, S. L., Sudisha, J., Prakash, H. S., & Fathima, S. K. (2011). Isolation and characterization of antimicrobial compound from Chromolaena odorata. Journal of Phytology, 3(10), 1–10.

Surabhi, S., & Singh, B. K. (2018). Molecular docking: A review on its importance in drug design. International Journal of Pharmaceutical Science and Research, 9(4), 1345–1352. Tabassum, S., & Khan, M. (2023). Allosteric regulation of PBP2a in MRSA. Protein Science, 32(1), e4512.

Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.

Tun, T. T., & Myint, K. (2022). Ethnomedicinal survey of medicinal plants used by local people in Myanmar. Journal of Herbal Medicine, 32, 100543. Yasir, M., & Al-Malki, A. L. (2024). Validation of PBP2a crystal structures for molecular docking studies. Structural Biology Communications, 80(1), 12–20.

Yuan, H. D., Ma, Q. Q., Ye, L., & Piao, G. C. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559–576. https://doi.org/10.3390/molecules21050559.