Investigating the bioactive compounds in aqueous extract of Calotropis procera and its toxicological evaluation using Drosophila melanogaster model

Main Article Content

Samuel S. Abegunde
Oluwaseyi A. Akpor
Scholastica O. Anodozie
Olusola B. Adewale

Abstract

Background/Aim: Phytochemicals are present in various plant tissues. These compounds provide beneficial effects on the plants, however,
limited harmful effects have been reported. This study investigated the bioactive compounds in the aqueous extract of Calotropis procera (AECP) and their toxic effects. Materials and Methods: The presence of bioactive compounds in the plant was determined using standard methods and high-performance liquid chromatography, while the toxicological evaluation was done using Drosophila melanogaster. Flies
were grouped into 6 (n = 5), comprising control and AECP-treated groups. Flies were homogenized after 21 days of exposure to AECP, and toxicological parameters such as total thiol, reduced glutathione, catalase, nitric oxide, geotaxis, and survival tests were investigated. Results: The plant extract was found to be rich in phenols, flavonoids, tannins, reducing sugars, and glycosides, with the total phenols content
of 14.05 ± 0.07 mg Tannic acid/g equivalent and total flavonoids content of 9.218 ± 0.05 mg Quercetin/g equivalent. Sixteen compounds were identified in the plant with the highest abundance in the order: quercetin, cymbopogon, hydroquinone, chlorogenic acid, ferulic acid, and
luteolin. It was also observed that the plant was not toxic to flies exposed to doses up to 2 mg/g diet as indicated by a non-significant difference in the parameters investigated but a significant change (p < 0.05) was noted in catalase, reduced glutathione and nitric oxide at 4 mg/g diet when compared with the control. Conclusions: The presence of the secondary metabolites could ensure the plant of its pharmacological properties, and the plant could be considered safe up to a dose of 2 mg/g diet at short and long-term exposure.

Downloads

Download data is not yet available.

Article Details

How to Cite
Abegunde, S. S., Akpor, O. A., Anodozie, S. O., & Adewale, O. B. (2025). Investigating the bioactive compounds in aqueous extract of Calotropis procera and its toxicological evaluation using Drosophila melanogaster model. ABUAD International Journal of Natural and Applied Sciences, 5(1), 58–64. https://doi.org/10.53982/aijnas.2025.0501.07-j
Section
Articles

References

Adedara, I. A., Abolaji, A. O., Rocha, J. B., & Farombi, E. O. (2016). Diphenyl Diselenide Protects Against Mortality, Locomotor Deficits and Oxidative Stress in Drosophila melanogaster Model of Manganese Induced Neurotoxicity. Neurochemical Research, 41(6), 1430-1438. doi:10.1007/s11064-016-1852-x Adeola, O. E., Akpor, O. A., Adamolekun, M. M., Adewale, O. B., & Akpor, O. B. (2023). In vitro antioxidant and antimicrobial potentials of aqueous extract of Picralima nitida seeds. Vegetos. doi:10.1007/ s42535-023-00778-z Adewale, O. B., Onasanya, A., Anadozie, S. O., Abu, M. F., Akintan, I. A., Ogbole, C. J., Olayide, I. I., Afolabi, O. B., Jaiyesimi, K. F., Ajiboye, B. O., & Fadaka, A. O. (2016). Evaluation of acute and subacute toxicity of aqueous extract of Crassocephalum rubens leaves in rats. Journal of Ethnopharmacology, 188, 153-158. doi:https://doi.org/10.1016/j.jep.2016.05.003 Adewale, O. B., Onasanya, A., Fadaka, A. O., Iwere, H., Anadozie, S. O., Osukoya, O. A., & Olayide, I. I. (2014). In vitro antioxidant effect of aqueous extract of Solanum macrocarpon leaves in rat liver and brain. Oxidants and Antioxidants in Medical Science, 3(3), 225-229. Aghababaei, F., & Hadidi, M. (2023). Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel), 16(7). doi:10.3390/ ph16071020 Amini, M. H., Ashraf, K., Salim, F., Meng Lim, S., Ramasamy, K., Manshoor, N., Sultan, S., & Ahmad, W. (2021). Important insights from the antimicrobial activity of Calotropis procera. Arabian Journal of Chemistry, 14(7), 103181. doi:https://doi.org/10.1016/j. arabjc.2021.103181 Andrabi, S. M., Sharma, N. S., Karan, A., Shahriar, S. M. S., Cordon, B., Ma, B., & Xie, J. (2023). Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. Adv Sci (Weinh), 10(30), e2303259. doi:10.1002/advs.202303259 Claiborne, A. (2018). Catalase Activity. In Handbook Methods For Oxygen Radical Research (pp. 283 284): CRC Press. de Lima, J. M., de Freitas, F. J. C., Amorim, R. N. L., Câmara, A. C. L., Batista, J. S., & Soto-Blanco, B. (2011). Clinical and pathological effects of Calotropis procera exposure in sheep and rats. Toxicon, 57(1), 183-185. doi:https://doi.org/10.1016/j. toxicon.2010.11.007 Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82. doi:10.1016/0003 9861(59)90090-6 Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and nitrate in biological fluids. Analytical Biochemistry, 126(1), 131-138. doi:https:// doi.org/10.1016/0003-2697(82)90118-X Kaur, A., Batish, D. R., Kaur, S., & Chauhan, B. S. (2021). An Overview of the Characteristics and Potential of Calotropis procera From Botanical, Ecological, and Economic Perspectives. Frontiers in Plant Science, 12, 690806. doi:10.3389/fpls.2021.690806 Kazeem, M. I., Mayaki, A. M., Ogungbe, B. F., & Ojekale, A. B. (2016). In-vitro Studies on Calotropis procera Leaf Extracts as Inhibitors of Key Enzymes Linked to Diabetes Mellitus. Iranian Journal of Pharmaceutical Research, 15(Suppl), 37-44. Kinda, P. T., Guenné, S., Compaoré, M., Bayala, B., Ciobica, A., Belemtougri, R., & Kiendrebéogo, M. (2019). Toxicological characterization and central nervous system effects of Calotropis procera Ait. aqueous extracts in mice. Asian Pacific Journal of Tropical Medicine, 12(7). doi: 10.4103/1995 7645.262077 Kumar, A., Kumar, B., Kumar, R., Kumar, A., Singh, M., Tiwari, V., Trigunayat, A., & Paul, P., (2022). Acute and subacute toxicity study of ethanolic extract of Calotropis procera (Aiton) Dryand flower in Swiss albino mice. Phytomedicine Plus, 2(2), 100224. doi:https://doi.org/10.1016/j.phyplu.2022.100224 Lopez-Ortiz, C., Gracia-Rodriguez, C., Belcher, S., Flores-Iga, G., Das, A., Nimmakayala, P., . . . Reddy, U. K. (2023). Drosophila melanogaster as a Translational Model System to Explore the Impact of Phytochemicals on Human Health. International Journal of Molecular Sciences, 24(17), 13365. doi:10.3390/ijms241713365 Lv, J., Song, X., Luo, Z., Huang, D., Xiao, L., & Zou, K. (2025). Luteolin: exploring its therapeutic potential and molecular mechanisms in pulmonary diseases. Frontiers in Pharmacology, 16, 2025. doi: https://doi. org/10.3389/fphar.2025.1535555 63 Abegunde et al., 2025 AJINAS, 5 (1) Mohammed, A., Ibrahim, S., & Bilbis, L. (2012). Toxicological investigation of aqueous leaf extract of Calotropis procera (Ait.) R. Br. in Wister albino rats. African Journal of Biochemistry Research, 6. doi:10.5897/AJBR12.003 Morsy, N., Sherif, E., & Abdel-rassol, T. (2016). Phytochemical analysis of Calotropis procera with antimicrobial activity investigation. Main Group Chemistry, 15, 267-273. doi:10.3233/MGC-160206 Oyaluna, Z., Abolaji, A., & Babalola, C. (2021). Effects of Ruzu Herbal Bitters, a Traditional Nigerian Polyherbal Drug, on Longevity and Selected Toxicological Indices in Drosophila melanogaster. Biointerface Research in Applied Chemistry, 11. doi:10.33263/BRIAC112.96389645. Oyetayo, B. O., Abolaji, A. O., Fasae, K. D., & Aderibigbe, A. (2020). Ameliorative role of diets fortified with Curcumin in a Drosophila melanogaster model of aluminum chloride-induced neurotoxicity. Journal of Functional Foods, 71, 104035. doi: https://doi.org/10.1016/j.jff.2020.104035 Salehi, B., Machin, L., Monzote, L., Sharifi-Rad, J., Ezzat, S. M., Salem, M. A., . . . Cho, W. C. (2020). Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega, 5(20), 11849-11872. doi:10.1021/acsomega.0c01818 Singh, N. K., Bhushan, B., & Agrahari, Y. (2024). An overview on the phytochemical and therapeutic potential of Calotropis procera. Pharmacological Research - Modern Chinese Medicine, 11, 100441. doi:https://doi.org/10.1016/j.prmcm.2024.100441 Taheri, Y., Sharifi-Rad, J., Antika, G., Yılmaz, Y. B., Tumer, T. B., Abuhamdah, S., . . . Cho, W. C. (2021). Paving Luteolin Therapeutic Potentialities and Agro Food-Pharma Applications: Emphasis on In Vivo Pharmacological Effects and Bioavailability Traits. Oxidative Medicine and Cellular Longevity, 2021(1), 1987588. doi: https://doi.org/10.1155/2021/1987588 Truswell, W. H. (2020). Prescription Skin Care Products and Skin Rejuvenation. Facial Plastic Surgery Clinics of North America, 28(1), 59-65. doi: https:// doi.org/10.1016/j.fsc.2019.09.005 William, A., Shamaki, B. U., Sadiq, A. A., & Abdullahi, A. (2015). Phytochemical and Elemental Constituents, Acute Toxicity (LD50) Studies of Aqueous Leaf Extract of Calotropis procera. World Journal of Pharmaceutical Sciences, 3(4), 696-701. Zhai, Y., Wang, T., Fu, Y., Yu, T., Ding, Y., & Nie, H. (2023). Ferulic Acid: A Review of Pharmacology, Toxicology, and Therapeutic Effects on Pulmonary Diseases. International Journal of Molecular Sciences, 24(9). doi:10.3390/ijms24098011 Zhao, J., Fan, Y., Cheng, Z., Kennelly, E. J., & Long, C. (2024). Ethnobotanical uses, phytochemistry and bioactivities of Cymbopogon plants: A review. Journal of Ethnopharmacology, 330, 118181. doi: https://doi.org/10.1016/j.jep.2024.118181