
ABUAD Journal of Engineering Research and Development (AJERD) 
ISSN (online): 2645-2685; ISSN (print): 2756-6811 

 
Volume 7, Issue 2, 251-259 

                        

https://doi.org/10.53982/ajerd           251 

 

Network Congestion Tracking and Detection in Banking Industry Using 

Machine Learning Models 

Kingsley Ifeanyi CHIBUEZE
1
, Nwamaka Georgenia EZEJI

2
, Nnenna Harmony NWOBODO-NZERIBE

2 

 
1
Department of Computer Science and Mathematics, Godfrey Okoye University, Enugu State, Nigeria 

chibueze_kingsley@gouni.edu.ng 

 
2
Department of Computer Engineering, Enugu State University of Science and Technology, Enugu, Nigeria 

georgeniaezeji@gmail.com/nnennanwobo8@gmail.com 

 

Corresponding Author: chibueze_kingsley@gouni.edu.ng, +2348100434413         
Date Submitted: 25/07/2024 

Date Accepted:  24/08/2024   

Date Published: 01/09/2024   

 

Abstract: The escalating threat of congestion in wireless networks on a global scale prompts the need for effective detection and 

management techniques. This study investigates the tracking and detection of congestion in wireless networks, particularly within the 

banking industry, where digital transactions are rapidly increasing. It addresses the challenge of congestion management through 

machine learning (ML) models, aiming to enhance network performance and service quality. This research evaluates various ML 

algorithms, including Support Vector Machines, Decision Trees, and Random Forests, to identify the most effective approach for 

congestion detection. This research utilizes a dataset sourced from MainOne Limited, which covered August 18th, 20th, 22nd, 23rd, and 

24th, 2023, and included banking operation hours from 7 AM to 4 PM each day. Preprocessing of data is conducted to optimize model 

training. Following training, various performance metrics including accuracy, precision, recall, F1 score, response time, and confusion 

matrix are assessed. Results demonstrate that Random Forest outperforms other models in accuracy, precision, recall, F1 score, and 

response time, with an accuracy of 98.90%. This research discusses the importance of continuous innovation in banking network 

analytics to tackle evolving congestion challenges. Future recommendations include leveraging advanced ML techniques like deep 

learning and reinforcement learning and exploring ensemble learning methods to enhance congestion detection models further. 
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1. INTRODUCTION 

In today's communication landscape, wireless networks serve as the backbone, facilitating seamless connectivity for a 

multitude of devices and applications. However, with the exponential increase in demand for wireless connectivity, 

congestion has emerged as a significant challenge, impacting network performance and user experience. Congestion occurs 

in wireless networks when the demand for network resources exceeds available capacity, resulting in performance 

degradation and a decline in service quality [1]. The heterogeneous nature of congestion, affecting different network 

segments to varying degrees, adds complexity to congestion management. 

While progress has been made in congestion management, current approaches often overlook the heterogeneous nature 

of congestion occurrences. As a result, real-world wireless networks continue to face issues such as slower data transfer 

speeds, increased latency, packet loss, and service interruptions [2]. 

Machine learning has recently achieved notable progress across various fields, including speech recognition, robotic 

control and computer vision. ML has the capability to learn from data or environmental inputs and develop models. With 

the advancements in computing infrastructure, such as GPUs, TPUs, and ML libraries, along with distributed data 

processing frameworks, there is a growing trend toward applying ML to solve complex networking challenges. ML's 

strengths in tasks like regression, decision-making and classification make it crucial for potential innovations in congestion 

detection and control. 

Unlike conventional congestion control methods that depend on fixed rules based on human knowledge of the network, 

ML creates algorithms or models that learn from previous experiences or the network environment. The use of powerful 

computing resources, along with advanced technologies like edge computing and software-defined networking, makes 

ML-based congestion control more effective. Specialized libraries like TensorFlow, Caffe, and PyTorch make it simple to 

develop ML models [3]. Detecting signs of network congestion and proactively addressing them, stands as a highly 

efficient strategy for mitigating congestion effectively. 

This study focuses on heterogeneous congestion, particularly in the banking industry, where digital transactions are 

increasing. The surge in online banking activities, combined with diverse devices and connectivity modes, exacerbates 
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congestion challenges. Heterogeneous congestion is like when you're driving on a highway and you notice that traffic is 

really heavy in some lanes, but in others, it's moving along just fine. It's not that the whole road is jammed up, just parts of 

it. This happens in networks too. Some areas get overloaded with data because they're more crowded or less capable of 

handling the traffic, while others may still be running smoothly. So, it's an uneven congestion, where some parts are 

struggling while others aren't. Traditional congestion control mechanisms struggle to adapt to the evolving patterns of 

online transactions and device characteristics, necessitating innovative solutions.  

It's true that traditional methods, like protocol analyzer software, can detect network congestion by observing metrics 

such as large round-trip times (RTTs), but they usually identify congestion after it has already begun. However, the 

dynamic and increasingly complex nature of modern networks demands a more proactive and adaptive solution. That's 

where machine learning comes in. It can analyze a lot of network data in real time, spotting patterns that might go 

unnoticed with older tools. Through learning from past data, machine learning models can predict congestion before it 

happens, allowing for early intervention. This helps keep the network running smoothly and reduces downtime. Unlike 

traditional methods that rely on fixed rules, machine learning can adapt to changing network conditions. As networks 

evolve, these models can be retrained to stay accurate, making them reliable even as new technologies emerge. 

To address these challenges, the study proposes the development of a proactive model to track and detect network 

congestion in real-time, considering dynamic fluctuations and diverse network components. Various machine learning 

models, including Support Vector Machines, Decision Trees, and Random Forest, were used and evaluated based on 

detection accuracy, recall, precision, F1 score, and response time to determine the most effective approach. By tackling 

these issues, the study aims to enhance wireless network performance, reliability, and service quality, supporting seamless 

operation for various banking applications and services.  

2. LITERATURE REVIEW 

Singh et al. [4] applied machine learning techniques for detecting network congestion in the banking sector. Their study 

utilized a combination of Decision Trees and Gradient Boosting to analyze transaction data and network logs. The 

methodology involved pre-processing the data to identify patterns indicative of congestion. The results demonstrated that 

the models could predict congestion with an accuracy of 90%, leading to improved network management and customer 

satisfaction. Wang and Li [5] applied deep learning models for detecting congestion in banking networks. They utilized 

Long Short-Term Memory (LSTM) networks to analyze time-series data gathered from banking transactions and network 

performance metrics. The study reported an 87% accuracy in detecting congestion events, emphasizing the importance of 

considering temporal dependencies in the data. Rodriguez et al. [6] examined the effectiveness of reinforcement learning in 

managing network congestion within banking systems. The methodology involved training an agent using Q-learning to 

optimize network resource allocation dynamically. The results indicated that the reinforcement learning approach reduced 

congestion incidents by 30%, significantly enhancing network efficiency and reducing transaction delays 

Chen and Zhang [7] employed Support Vector Machines (SVM) to detect congestion in mobile ad hoc networks 

(MANETs). Their methodology included training the SVM model on several key features such as packet delivery ratio, 

throughput, and delay. The study reported an 89% detection rate and highlighted the improvement in network performance 

achieved by dynamically adjusting routes based on congestion levels. Gupta et al. [8] studied the application of Random 

Forest algorithms for detecting congestion in wireless networks. The research focused on training the Random Forest 

model with historical network data to enable proactive prediction and management of congestion. The results showed a 

high detection accuracy of 92%, indicating that the ensemble learning approach was effective in handling the complexities 

of wireless network congestion.  

Sudhamani et al. [9] proposed a Decentralized Predictive Congestion Control model for banking networks. The 

methodology involved employing decentralized machine learning algorithms to predict and control congestion at the 

network edge. This approach enhanced network scalability and reduced congestion. The primary challenge was 

coordinating predictions across different network nodes, which faced some difficulties. Perera et al. [10] explored the 

integration of ML algorithms with SDN for network traffic classification. They trained ML models using labeled data and 

evaluated SVM Linear, SVM (Rbf), Decision Tree, Random Forest, and Knn models. The SVM Linear model 

demonstrated the highest accuracy among the models tested. Razmara et al. [11] demonstrated enhanced prediction 

accuracy by employing a hybrid neural network method that integrated neural networks with genetic algorithms. This 

hybrid approach yielded superior accuracy, sensitivity, and precision in forecasting congestion. Although their study 

primarily concentrated on congestion prediction, future investigations should aim to leverage these predictions for 

congestion management purposes. 

Mo et al. [12] introduced a fine-grained network congestion detection system using flow watermarking. The method 

involved adding watermarks and changing time-related features that are weak against various network attacks. The system 

integrated the extended Berkeley Packet Filter (eBPF) technique for packet identification in multi-flow scenarios. However, 

the study did not explicitly address the issue of dynamic and heterogeneous congestion conditions, which are important 

factors in real-world congested environments. Kuboye et al. [13] applied machine learning methods to assess traffic 

congestion within LTE networks. They assessed various algorithms and determined that the k-Nearest Neighbor algorithm 

achieved the highest accuracy in predicting congestion. Zhou et al. [14] used Convolutional Neural Networks (CNNs) to 

detect network congestion in financial institutions, achieving a 91% accuracy. The study focused on analyzing network 
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traffic data, but it was limited by its reliance on a static dataset, which may not fully represent real-world conditions. Jiang 

et al. [15] employed Recurrent Neural Networks (RNNs) to predict congestion events in banking networks by analyzing 

time-series data. Their model achieved an 89% accuracy but faced challenges in dealing with noisy data, potentially 

affecting its effectiveness in live environments. Khan et al. [16] suggested a deep learning model that merges 

Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) networks for detecting network 

congestion. The model achieved a 92% accuracy in predicting congestion events by effectively analyzing network 

performance metrics. However, the study faced limitations, including the high computational resources required for the 

model and the uncertainty of its effectiveness across different network environments. 

3. MATERIALS AND METHODS 

This section outlines the materials and methods employed for the development of a detection model for network 

congestion, as displayed in Figure 1. The process starts with the collection of a dataset comprising network data analysis. 

Subsequently, the gathered data undergoes pre-processing procedures aimed at ensuring data quality and enhancing the 

effectiveness of the training process. The pre-processed data serve as input for Machine learning model. The training 

process continues iteratively until the error between the actual and predicted values reaches a minimal and acceptable 

threshold. The entire implementation of this methods is carried out using the machine learning toolbox available within 

Python environment. Additionally, libraries like pandas, numpy, and sklearn are imported. A comparative analysis is 

conducted to validate the methodology and determine the most effective algorithm for network congestion detection. 

 

 
 

Figure 1: Process diagram 

3.1 Data Collection 
The data for this study was gathered from the 5G network infrastructure at a commercial bank in Enugu State, Nigeria. 

The focus was on assessing the quality of the operational 5G network, specifically analyzing the routing device, which is a 

critical component responsible for network coverage, resource allocation, and overall performance within the bank. The 

routing system was evaluated using a traffic-based congestion management scheme. Network traffic data was obtained 

from MainOne Limited, the company responsible for maintaining the bank’s network and possessing historical records of 

network behavior. The data collection period covered August 18th, 20th, 22nd, 23rd, and 24th, 2023, and included banking 

operation hours from 7 AM to 4 PM each day. The parameters monitored included load utilization factor, data uplink, 

packet loss, throughput, and latency. Data was sampled every 30 minutes during banking hours, with a specific focus on 

operation times, peak congestion periods, and off-peak periods. The load factor was calculated based on the maximum site 

capacity of 1024 Mbps per second. 

Table 1: Dataset features and their description 

Feature Description 

Data Uplink (Mbps) Measures the amount of data transmitted from a user device to the network. It is 

expressed in bytes per second (Bps) or megabits per second (Mbps). 

Load Factor (%) Represents the utilization level of the network resources. It indicates how much of 

the available bandwidth is being used, often expressed as a percentage. 

Throughput (Mbps) The rate at which data is successfully transmitted over the network, typically 

measured in bits per second (bps) or megabits per second (Mbps). 

Packet Loss (%) The percentage of data packets lost during transmission across the network. A high 

packet loss rate may signal network congestion or other problems. 

Latency (ms) The time delay experienced in the network when transmitting data from one point 

to another. It is measured in milliseconds (ms) and affects the responsiveness of the 

network. 

Congested A binary indicator (1/0) showing whether the network is congested based on the 

current traffic and performance metrics. 
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3.2 Data Pre-processing 

After collecting the data, it must be pre-processed to prepare it for training. This involves several tasks, including 

handling missing values by either imputing or removing them to ensure a complete dataset without introducing bias. 

Another important step is scaling the features, which involves normalizing or standardizing numerical data to ensure a 

consistent scale and prevent certain features from dominating others during training. Encoding categorical variables is 

essential to convert them into numerical formats that machine learning algorithms can understand.  Finally, the dataset is 

split into training and testing sets, ensuring that the model's performance can be evaluated, thus facilitating effective model 

training and assessment.  

3.3 Machine Learning Models 

Machine Learning is a subfield of Artificial Intelligence that enable a machine (or agent) to perform a task when 

encountering new data or environments, after being trained. Nowadays, machine learning models are increasingly pivotal 

in detecting network congestion globally. This section will succinctly explore employing machine learning models for 

identifying network congestion and assessing the effectiveness of our approach efficiently. 

3.3.1 Support vector machines  

Support Vector Machines (SVMs) are supervised learning algorithms designed for regression and classification tasks. 

They operate by identifying the optimal hyperplane that maximizes the separation between different classes in a high-

dimensional space. This process involves solving a convex optimization problem, aiming to minimize the norm of the 

weight vector while correctly classifying all data points. After training, SVMs classify new data points based on which side 

of the hyperplane they fall. 

3.3.2 Decision trees 

Decision Trees serve as a widely adopted supervised learning method applicable to both classification and regression 

tasks. Decision Trees split the data recursively using input features to build a tree structure, where each internal node 

represents a decision and each leaf node represents a prediction. The algorithm chooses the best feature for splitting the 

data at each node to ensure that each subset is as homogeneous as possible regarding the target variable. Decision rules are 

applied to new data points as they traverse the tree, determining the predicted outcome at leaf nodes.  

3.3.3 Random forest 

Random Forest is a robust ensemble learning technique that merges multiple decision trees to enhance predictive 

performance and reduce overfitting. It starts by randomly sampling subsets of the training data with replacement and 

training decision trees independently on each subset. At each node of each tree, a random subset of features is selected, 

adding diversity to the trees. Predictions are made by combining the results from all trees through voting, where the most 

common vote decides the final prediction. 

3.4 Training of Machine Learning Models 

The process was conducted in a Python environment, where the acquired dataset was imported and utilized for training 

various machine learning models, specifically Decision Trees, Support Vector Machines (SVMs), and Random Forests. 

Each model was trained to recognize patterns in the data to make accurate predictions about the target variable. The 

Decision Tree model was trained to learn decision rules from the data and build a tree structure that classifies data based on 

feature values. The SVM model was trained to find the optimal hyperplane that maximizes the margin between classes, 

using a convex optimization approach. The Random Forest model was trained by constructing multiple decision trees and 

combining their outputs to improve prediction accuracy and robustness. Figures 2 through 4 illustrate the training 

processes for each of these machine learning models. 

4. RESULTS AND DISCUSSION 

4.1 Results  
After applying machine learning models like Decision Trees, Support Vector Machines, and Random Forests on the 

cellular network data analysis, we used various performance metrics to evaluate and compare their performance. Accuracy, 

a common measure for classification algorithms, shows the ratio of correct predictions to the total number of predictions. 

Precision is important too, indicating the proportion of correctly predicted positive instances out of all predicted positives, 

emphasizing the model’s ability to reduce false positives. Additionally, Recall measures the model's ability to correctly 

identify positive instances, showing the ratio of true positive predictions to all actual positives. The F1 score combines 

precision and recall into one metric, offering a balanced evaluation of the model's overall performance. In the context of 

network analysis, response time refers to the duration taken by a network device or system to detect and respond to 

congestion. Following model training, the results shown in Table 2 were obtained. 

The confusion matrix stands as a pivotal metric, offering an intricate breakdown of the model's performance concerning 

true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). This matrix is a key tool for 

assessing how effectively the model categorizes instances into their respective classes. Below, Figures 5 through 7 display 

the confusion matrix, providing a detailed insight into the model's classification performance 
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Table 2: Training reports of the models 

Algorithms Accuracy Precision Recall F1 Score Response Time 

Decision Trees 81.50% 0.7674 0.7743 0.7743 133.8 secs 

Support Vector Machine 97.98% 0.9801 0.9798 0.9799 104.5 secs 

 Random Forest 98.90% 0.9890 0.9891 0.9892 23.71 secs 

 

 
Figure 2: Decision tree training flowchart       Figure 3: Random forest training flowchart 
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Figure 4: SVM training flowchart 

 

 

 
Figure 5: Confusion matrix for support vector machine               Figure 6: Confusion matrix for random forest 
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Figure 7: Confusion matrix for decision tree 

4.2 Discussion 

The findings from the study reveal that Random Forest outperformed Support Vector Machines and Decision Tree in 

terms of accuracy. Following this, Random Forest exhibited the highest accuracy of 98.90%, trailed by Support Vector 

Machines at 97.98%, and Decision Tree at 81.50% as presented in figure 10. Additionally, Random Forest demonstrated 

superior performance across other key metrics such as precision, recall, f1 score and response time compared to Support 

Vector Machines and Decision Tree. Analyzing the confusion matrix, Random Forest displayed the highest counts of true 

positives and true negatives, indicating a greater number of correct predictions. Moreover, it exhibited the lowest counts of 

false positives and false negatives, suggesting fewer incorrect predictions. Overall, the results suggest that Random Forest 

emerges as the most effective machine-learning algorithm for this specific study.  

4.3 Intelligent Congestion Tracking and Detection (ICTD) Model 

     The ICTD model, an effective Random Forest approach, was utilized to monitor various network parameters including 

throughput, latency, packet loss, and load utilization factor. During banking hours, these network performance metrics 

fluctuate based on user behavior, both within and outside the bank, as financial transactions are carried out. The Random 

Forest model is trained to recognize and classify these behavioral changes in the 5G network. By employing pattern 

matching, the model detects network congestion. If congestion is not detected, the monitoring process continues in a cycle 

until congestion is identified. Algorithm 1 provides the pseudocode for the ICTD model, illustrating this process  

 

Algorithm 1: The congestion tracking and detection algorithm  

1. Start  

2. Parameters initialization  

3. Monitor network traffic information  

4. Apply the trained ICTD model 

5. Initialize classification  

6. For  

7. Congestion classified  

8. Initialize the control algorithm 

9. Else  

10. Return to step 3 

11. End  

As network traffic accumulates due to the diverse range of user devices and activities, network traffic patterns 

continuously evolve. The attributes that model these behaviors—such as throughput, latency, packet loss, and load 

utilization factor—are analyzed by the trained ICTD model. This model uses a pattern matching process to detect network 

congestion and initiate the appropriate control measures. If congestion is not detected, the monitoring process repeats, 

continuing in this cycle until congestion is identified. Figure 8 illustrates the architectural model of the Intelligent 

Congestion Tracking and Detection (ICTD) system, which is built using a Random Forest algorithm. 
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Figure 8: Architecture of the ICTD model 

Figure 8 illustrates the architectural model of the Intelligent Congestion Tracking and Detection (ICTD) system used 

for network congestion detection. During banking operations, user equipment in the access layer connects to a switch that 

relays network traffic information—such as throughput, packet loss, latency, and load utilization factor—to the trained 

neural network model. This model monitors and detects congestion in real-time. If congestion is detected, the control 

model is initialized to balance the load. If congestion is not detected, the system continues to monitor and analyze the 

network traffic in a continuous cycle until congestion is identified and managed. 

Table 3: Comparative analysis of results with existing deep learning models 

Authors Technique Accuracy 

Wang and Li [5] Long Short-Term Memory (LSTM) 87% 

Zhou et al. [14] Convolutional Neural Networks (CNNs) 91% 

Jiang et al. [15] Recurrent Neural Networks (RNNs) 89% 

Khan et al. [16] Convolutional Neural Networks (CNNs) with 

Long Short-Term Memory (LSTM) 

92% 

New Study Support Vector Machine, Decision Trees, Random 

Forest 

81.50%, 

97.98%, 

98.90% 

 

Table 3 compares the performance of existing deep learning models with the new model for detecting congestion in 

networks. In this comparative assessment, the newly developed models were compared with other pre-existing deep 

learning models, and the outcomes indicated that only the Random Forest model developed in the new study achieved 

superior detection accuracy. This does not imply that deep learning models are inefficient; rather it highlights the need for 

more advanced deep learning techniques for effective detection and management of congestion. 

5. CONCLUSION 

This research delves into the critical realm of wireless networks, focusing on the tracking and detection of congestion 

using machine learning models. It highlights the urgent necessity for precise detection tools given the escalating global 

burden of congestion through harnessing advanced technologies like artificial intelligence and machine learning. A 

thorough review of existing literature reveals the exploration of diverse machine learning algorithms for network 

congestion tracking and detection, each demonstrating promising results. The study investigated the effectiveness of 

machine learning models in the detection of network congestion, especially in the context of the banking industry, where 

digital transactions are burgeoning. Through the analysis of various machine learning algorithms including Support Vector 

Machines, Decision Trees, and Random Forests, the study aimed to identify the most efficient approach for congestion 
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tracking and detection. Results indicated that Random Forest performed better than the other models in terms of accuracy, 

precision, recall, F1 score, and response time, with an accuracy of 98.90%. The confusion matrix analysis showed that 

Random Forest performed better, with more true positives and true negatives, and fewer false positives and false negatives 

compared to Support Vector Machines and Decision Trees. The research also highlights the need for ongoing innovation 

and study in banking network analytics to handle the growing challenges of congestion. 

6. CONTRIBUTION TO KNOWLEDGE 

This study employs machine learning (ML) techniques to improve the detection and management of congestion in 

wireless networks, a critical area given the increasing digitalization of banking services. The study highlights the 

complexity of congestion due to diverse network traffic and user behavior in the banking industry. By focusing on dynamic 

fluctuations and various network components, it offers a nuanced understanding of congestion management. Given the 

crucial role of digital transactions, the findings have immediate practical implications, enhancing network reliability and 

efficiency, thus improving user experience and operational efficiency. The research advocates for future exploration of 

advanced ML techniques like deep learning and reinforcement learning, emphasizing the need for continuous innovation in 

network analytics to address evolving congestion challenges in the banking sector and beyond. 

7.  RECOMMENDATION 

Future research works should focus on improving the capabilities of congestion detection models by using advanced 

machine learning techniques, such as deep learning and reinforcement learning. Additionally, exploring the integration of 

real-time data streams and edge computing can further enhance the efficiency and effectiveness of congestion detection 

and management systems. Exploring ensemble learning techniques such as stacking or boosting could potentially improve 

the predictive capabilities of machine learning models for network congestion detection. 
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