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Abstract: The exponential growth and proliferation of wireless devices for different wireless applications have led to the emergence of 

cognitive radio network (CRN) for optimal utilization of scarce spectrum resources. However, these resources have grossly been under-

utilized due to the inaccurate spectrum predictions. Existing spectrum occupancy and prediction techniques which rely on 2-state hidden 

Markov model (HMM) results in false alarm or missed detection caused by noisy or incomplete observable effects. In this paper, a 3-

state HMM spectrum occupancy and prediction technique in CRNs is proposed. The transmission, emission and initial state 

probabilities of the proposed 3-state HMM parameters were derived based on the three canonical problems associated with HMM. The 

evaluation, decoding and learning problems were solved using Forward algorithm, Viterbi algorithm and the Baum-Welch algorithm, 

respectively. The performance of the proposed 3-state HMM spectrum prediction technique was evaluated using prediction accuracy, 

probability of detection and spectrum utilization efficiency. The simulation results obtained revealed that the 3-state HMM outperformed 

the 2-state HMM spectrum prediction technique by 24.1% in prediction accuracy. 

Keywords: Cognitive Radio Network, 3-state HMM, Spectrum Prediction, Prediction Accuracy, Probability of Detection 

 
1. INTRODUCTION 

A remarkable success recorded over the decade by the wireless communication research community is the tremendous 

and evolutionary transformation from the first generation (1G) cellular telephone systems to the fifth generation (5G) 

network [1-3]. Spectrum is an important component of wireless communication and has been reported to be scarce and 

under-utilized because of different emerging wireless applications. To subdue the challenge of spectrum scarcity, cognitive 

radio network (CRN) was introduced by Mitola in [4] as one of the important components of the 5G network. The 

technology helps to increase spectral efficiency as secondary users (SUs) or cognitive radio (CR) users are allowed to 

access spectrum holes left unused by licensed or primary users (PUs) [5,6]. In order to avoid undue interference to licensed 

users, there is need for a dynamic spectrum access (DSA) by cognitive radio nodes which require algorithms and protocols 

for rapid spectrum sensing accuracy, efficient coordination and beneficial cooperation [7-9].  

 Spectrum prediction is a robust technique complimentary to spectrum sensing for obtaining the relevant information as 

regards spectral evolution. It also provides identification of spectrum holes as a band of frequencies meant for a certain PU 

but which are found vacant at some points in time and specific geographic locations [10]. Spectrum sensing involves the 

determination of the spectrum state in a passive manner using various signal detection methods. Spectrum prediction on the 

other hand detects the state of radio spectrum from already known spectrum occupancy statistics by effectively utilizing 

the existing inherent correlations in a proactive manner [11-13]. Spectrum prediction involved different techniques ranging 

from pure lookup table (LUT) to advanced techniques such as evolutionary algorithms, artificial neural network (ANN), 

hidden Markov model (HMM) and machine learning (ML) among others. Generally, all spectrum prediction techniques 

have been categorized into regression analysis-based, machine learning-based and Markov model-based [14-17].  

 Some of the existing contributions are discussed therein. In the work presented in [18], the design of a spectrum 

prediction technique using a neural network based and hidden Markov model which is a combination of a regression 

analysis, and a Markov model was performed. However, the work considered only two physical channel statuses which are 
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busy state and idle state. ML techniques of both ANN and support vector machine (SVM) were employed in [19] for 

spectrum prediction of future inactive times.  

 In [20], a 2-state HMM to predict channel activity patterns through a cyclic process for realizing the real parameter of 

channel usage was applied. The 2-state channels of active and inactive states were considered in slow, balanced and heavy 

traffic scenarios for checking the prediction outcomes. A hybrid of Bayesian theorem and exponential weighted moving 

average (EWMA) which is a regression analysis-based spectrum prediction was proposed by Jaison et al. [21]. The work 

utilized the conditional probability involving previous states to predict the next state.  

 An adaptive neuro fuzzy interference system (ANFIS) was proposed in [5] using regression analysis-based artificial 

neural networks and rule based fuzzy inference system for spectrum availability prediction in CRNs. Previous works such 

as [20] and [12] which utilized ML techniques show decrease in speed and suffers inaccuracy when large scale data sets 

were involved. On the other hand, regression analysis-based spectrum prediction techniques proposed in [21] suffered 

performance loss and difficulty in updating the regressive coefficient because of high complexity. The HMM techniques 

have shown a good spectrum prediction accuracy and are widely used because of its ability to simulate complex sequence 

of data sources as well as its consideration of historical information [13,23].  

 In [24], an HMM-based spectrum prediction algorithm for industrial applications with capability of predicting future 

multiple slots by formulating the prediction problem as a maximum likelihood (MLH) classification approach was 

proposed. Consideration was given to a higher number of hidden states which gave excessive increase in misclassification 

error due to model over-fitting of LUT employed and accompanied longer transmission delays. The prediction of channel 

state for cognitive radio using higher-order HMM (HO-HMM) was presented in [25] which considered more than one 

historical state for prediction of future states with unbearable increased complexity.  

 In view of the existing contributions, it is evidently clear that the accurate prediction of the channel state still possesses 

a major problem to CRN and require further consideration for efficient spectrum utilization and resource management. In 

this paper, the main contribution is to accurately predict the channel state of CRNs using the 3-state HMM for better 

utilization of the spectrum with less complexity and reduction of interference to PU transmission. Also, the prediction 

accuracy (PA), probability of detection (PD) and spectrum utilization efficiency (SUE) evaluation of the technique was 

performed and compared with a 2-state HMM technique. 

The paper is structured as follows: section II presents the system model, and the 3-state HMM formulation. In section III, 

the proposed 3-state spectrum occupancy and prediction is presented. In section IV, we presented the numerical results and 

discussions. Section V concludes the paper. 

 

2. SYSTEM MODEL AND THREE-STATE HMM FORMULATION 

2.1 System Model 

In this paper, fuzzy state was introduced to enhance the 2-state spectrum prediction models in CRNs using HMM. The 

2-state HMM largely presumed the PU networks to be either in a busy or idle state. The 3-state HMM prediction technique 

depicted in Figure 1 is based on the SU spectrum sensing outcome which is dependent on the true outcome of the PU 

transmission activities.  

st = -1 st = 0 st = 1

ot = -1 ot = 0 ot = 1

Hidden process

Observable process  
Figure 1: 3-State Hidden Markov Model 

An additional state named fuzzy is introduced in this paper to enhance the 2-state HMM spectrum prediction model 

with the PU network which can either be in a busy or idle state. The 3-state HMM also comprises parameters: initial state 

probability vector, transmission probability distribution and emission probability distribution. 

2.2 Spectrum sensing of the 3-state HMM 

The signal received by a PU receiver ′𝑦𝑃𝑈−𝑅𝑋(𝑡)′ from the PU transmitter ′𝑃𝑈 − 𝑇𝑋′ is written as. 

𝑦𝑃𝑈−𝑅𝑋(𝑡) = 𝑠𝑃𝑈−𝑇𝑋(𝑡) 𝑥𝑃𝑈−𝑇𝑋(𝑡) + 𝑤𝑃𝑈(𝑡)                              (1) 

 

where, 

𝑠𝑃𝑈−𝑇𝑋(𝑡) is the PU state,  
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𝑥𝑃𝑈−𝑇𝑋(𝑡) is the signal originating from the PU transmitter and  

𝑤𝑃𝑈(𝑡) is the additive Gaussian white noise modelled as 𝒲~(0, 𝜎2).  

 The spectrum sensing technique used at the SU is the energy detector which is based on the comparison of the 

received signal energy and the decision threshold ′𝜆𝑡ℎ′ that is characterized with low computational complexities [8,26]. 

Consequently, due to the additional state the third hypothesis was included alongside that of the 2-state as shown the 

Figure 1 which are characterized with noise and channel impairments and result in observable errors.  

 It is worth mentioning that the purpose of the fuzzy state is to minimize the interruption of the PU transmission which 

results in interference. This helps to restrict the SUs from opportunistically accessing the channel when the condition is not 

fully known. Equation (1) is then modified to accommodate the third state and is obtained using the Venn diagram concept 

as depicted in Figure 2 with the conditions expressed in (2) as.  

 

Busy IdleFuzzy

 
Figure 2: Venn diagram representation of the 3-state 

𝑦(𝑡) = {

𝑤(𝑡),   (𝑠(𝑡)𝑥(𝑡) ∪ 𝑤(𝑡)) ∩ 𝑤(𝑡)  → 𝑖𝑑𝑙𝑒

𝑠(𝑡)𝑥(𝑡) + 𝑤(𝑡) = {
(𝑠(𝑡)𝑥(𝑡) ∪ 𝑤(𝑡)) ∩ 𝑠(𝑡)𝑥(𝑡), → 𝑏𝑢𝑠𝑦  

𝑠(𝑡)𝑥(𝑡) ∩ 𝑤(𝑡), → 𝑓𝑢𝑧𝑧𝑦

             (2) 

 

Therefore, the hypothesis deduced in (2) is obtained as. 

 

 

   𝐻−1 :  − 1 → 𝑃𝑈 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛  𝑢𝑛𝑘𝑛𝑜𝑤𝑛 (𝑓𝑢𝑧𝑧𝑦)  

    𝐻0:    0   →  𝑃𝑈 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛  𝑎𝑏𝑠𝑒𝑛𝑡 (𝑖𝑑𝑙𝑒)        

     𝐻1:   1  → 𝑃𝑈 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛  𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (𝑏𝑢𝑠𝑦)        

                      (3) 

 

The spectrum sensing of the 3-state HMM prediction technique is characterized with the state space 𝑆 = {−1, 0,1} and 

emission space 𝑂 = {−1, 0,1}.  

2.3 Formulation of 3-state HMM 

 Consider the 3-state HMM, each state (𝑆 = 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑇) produces a number of outputs with a unique probability 

distribution and every distinct output is generated at any state. This approach involves a hidden process (𝑠𝑡 ∈ 𝑆) and an 

observable process (𝑂 = 𝑜1, 𝑜2, 𝑜3, … 𝑜𝑇) both making up a doubly stochastic process which allows observation symbols to 

be emitted from each state with a finite probability distribution. The emission probability matrix (𝑩) in each state is the 

probability that symbol (𝑣𝑘) is emitted in state 𝑠𝑗. The proposed approach makes it possible for a channel to transit to any 

state in a single transition process as illustrated. The 3-state HMM is expressed according to [24] as. 

 

 λ =  (𝜋, 𝑨, 𝑩)                      (4) 

 

where, 

 π is the initial state probability distribution for the 3-state HMM written as. 

𝜋 =  [𝜋−1 𝜋0 𝜋1] = [𝑃(𝑠𝑡 = −1) 𝑃(𝑠𝑡 = 0) 𝑃(𝑠𝑡 = 1)]                            (5) 

Equation (5) can be further expressed as. 

 

𝜋 =  [
𝑎−1 0+ 𝑎−1 1

𝑎−1 0+𝑎−1 1+𝑎0 −1+𝑎1 −1
  

𝑎0 −1+ 𝑎0 1

𝑎0 −1+𝑎0 1+𝑎−1 0+𝑎1 0
   

𝑎1 −1+ 𝑎1 0

𝑎1 −1+𝑎1 0+𝑎0 1+𝑎−1 1
]             (6) 

where, 

𝑎𝑖𝑗 ∈ 𝑨  is the element of the state transition probability distribution matrix when traversing between state 𝑖 and state  𝑗.  

The addition of the initial state probabilities of each state is given as. 

∑ 𝜋𝑖  =  13
𝑖=1                                         (7) 

The state transition probability distribution of a 𝑛-state HMM is expressed as. 
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𝑎𝑖𝑗 =  𝑃(𝑞𝑡+1 = 𝑠𝑗|𝑞𝑡 = 𝑠𝑖), ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛                                                    (8) 

 

In this paper, a 3-state HMM with the state transition matrix (𝑨) with 𝑛 × 𝑛 dimension is expressed as. 

 

𝑨 =  [

𝑃(𝑠𝑗 = −1|𝑠𝑖 = −1) 𝑃(𝑠𝑗 = −1|𝑠𝑖 = 0) 𝑃(𝑠𝑗 = −1|𝑠𝑖 = 1)

𝑃(𝑠𝑗 = 0|𝑠𝑖 = −1) 𝑃(𝑠𝑗 = 1|𝑠𝑖 = 0) 𝑃(𝑠𝑗 = 0|𝑠𝑖 = 1)

𝑃(𝑠𝑗 = 1|𝑠𝑖 = −1) 𝑃(𝑠𝑗 = 1|𝑠𝑖 = 0) 𝑃(𝑠𝑗 = 1|𝑠𝑖 = 1)

] = [

𝑎−1 −1 𝑎−1 0 𝑎−1 1

𝑎0 −1 𝑎0 0 𝑎0 1

𝑎1−1 𝑎1 0 𝑎1 1

]      (9) 

 

and the sum of the traversing path probabilities is given as. 

 

∑ 𝑎𝑖𝑗 = 1,3
𝑗=1     0 ≤ 𝑎𝑖𝑗 ≤ 1                                              (10) 

 

Likewise, the emmision or observation probabilities distribution for the 3-state HMM is expressed as. 

 

𝑏𝑗𝑘 = 𝑃(𝑜𝑘|𝑞𝑡+1 = 𝑠𝑗),   ∀  1 ≤ 𝑗 ≤ 𝑛, ∀  1 ≤ 𝑘 ≤ 𝑚                                          (11) 

 

this can be further used to form a 𝑛 × 𝑚 observation matrix (𝑩)  expressed as. 

 

𝑩 = [

𝑃(𝑜𝑘 = −1|𝑠𝑗 = −1) 𝑃(𝑜𝑘 = −1|𝑠𝑗 = 0) 𝑃(𝑜𝑘 = −1|𝑠𝑗 = 1)

𝑃(𝑜𝑘 = 0|𝑠𝑗 = −1) 𝑃(𝑜𝑘 = 1|𝑠𝑗 = 0) 𝑃(𝑜𝑘 = 0|𝑠𝑗 = 1)

𝑃(𝑜𝑘 = 1|𝑠𝑗 = −1) 𝑃(𝑜𝑘 = 1|𝑠𝑗 = 0) 𝑃(𝑜𝑘 = 1|𝑠𝑗 = 1)

] =  [

𝑏−1 −1 𝑏−1 0 𝑏−1 1

𝑏0 −1 𝑏0 0 𝑏0 1

𝑏1−1 𝑏1 0 𝑏1 1

]     (12) 

 

and the sum of the emission probabilities of each state is given as. 

 

∑ 𝑏𝑗𝑘 = 13
𝑘=1 ,     0 ≤ 𝑏𝑗𝑘 ≤ 1                       (13) 

 

The observable states within the emission sequence are conditionally independent of the state sequence by applying the 

first order Markov assumption and Markovian property [23] which is expressed as. 

 

𝑓𝑜𝑡|𝑠𝑡,𝑜𝑡−1
(𝑜𝑡|𝑠𝑡 , 𝑜𝑡−1) = 𝑓𝑂|𝑆(𝑜𝑡|𝑠𝑡)                       (14) 

 

Therefore, expressions for the emission probabilities in (12) are written as. 

 

𝑏−1 −1 = 1 −  𝑏−1 0 −  𝑏−1 1                      (15a) 

𝑏0 0   = 1 −  𝑏−1 0 −  𝑏1 0                      (15b) 

𝑏1 1  = 𝑄𝜇(√2𝛾√𝜆)                                     (15c) 

𝑏−1 0  = 𝑏0 −1 = 1 −  Γ(𝜇,𝜆 2⁄ )

Γ(𝜇)
                                   (15d) 

𝑏0 1  = 𝑏1 0 = Γ(𝜇,𝜆 2⁄ )

Γ(𝜇)
                                     (15e) 

𝑏−1 1  = 𝑏1 −1 = 1 −  𝑄𝜇(√2𝛾√𝜆)                                  (15f) 

 

where,  

𝛾 is the instanteneous SNR, 

𝜇 is the time-bandwidth function.  

By assuming the symmetric property for emission probabilities in (12), Equations (15c) and (15e) correspond to PD and 

PFA, respectively, while others are categorized as the PM. According to [27], Equation (15c) is obtained using the 

generalised Marcum 𝑄-function given as. 

 

𝑄𝑧(𝑎, 𝜏) = ( 1

𝑎(𝑧−1)) ∫ 𝑥𝑧 𝑒𝑥𝑝 (−(𝑥2+𝑎2)

2
) 𝐼(𝑧−1)(𝑎𝑥)𝑑𝑥

∞

𝜏
                              (16) 

 

where,  

𝐼(𝑧) is the modified Bessel function of the 1
st
 order.  

 

Similarly, Equation (15e) is obtained by using the incomplete gamma function given as; 

 

Γ(𝑎, 𝑥) = ∫ 𝑡(𝑎−𝑡) 𝑒𝑥𝑝(−𝑡)𝑑𝑡
∞

𝑥
                                   (17) 
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3. PROPOSED THREE-STATE SPECTRUM OCCUPANCY AND PREDICTION 

 In this section, the future state of the channel occupancy 𝑇 + 1 is determined and predicted using the previous 

channel state sequence at instant time 𝑇 based on observation sequence experienced by the SU. Considering the proposed 

3-state HMM, according to [28] the three canonical problems associated with the HMM namely: likelihood, decoding and 

training processes are solved for the CRN using the forward and backward algorithm, Viterbi algorithm and the Baum-

Welch algorithm, respectively, given the 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇  and 𝜆. 

Problem 1 (Likelihood): How to determine the probability that the observed sequence came from the model, 𝑃(𝑂|𝜆)? 

Problem 2 (Decoding): How to determine the most likely hidden state of the model that would generate the output 

sequence? 

Problem 3 (Training): How can the 𝜆 be adjusted by training the parameters 𝑨 and 𝑩 in order to maximize 𝑃(𝑂|𝜆)? 

 

The solution to the three problems posed are discussed as follows: 

The forward algorithm: The joint probability function is given as 𝛼𝑡(𝑖) = 𝑃(𝑜1 , 𝑜2, . . . , 𝑜𝑡 , 𝑞𝑡 = 𝑠𝑖|𝜆) , then 𝛼𝑡(𝑖)  is 

calculated recursively as. 

 Initialization: 𝛼1(𝑖) = 𝜋𝑖𝑏𝑖(𝑜1), 1 ≤ 𝑖 ≤ 3                       (18) 

 Recursion: 𝛼𝑡(𝑗) = 𝑏𝑗(𝑜𝑡)[∑ 𝛼𝑡−1(𝑖)3
𝑖=1 𝑎𝑖𝑗], 1 ≤ 𝑖, 𝑗 ≤ 3,   2 ≤ 𝑡 ≤ 𝑇            (19) 

 Termination: (𝑂|𝜆) = ∑ 𝛼𝑇(𝑖)3
𝑖=1                        (20) 

 

The backward algorithm: The steps are similar to those of forward algorithm but the conditional probability 𝛽𝑡(𝑖) is given 

as 𝛽𝑡(𝑖) = 𝑃(𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇|𝑞𝑡 = 𝑠𝑖 , 𝜆), 1 ≤ 𝑖 ≤ 3, then, the following procedure are employed recursively as: 

 Initialization: 𝛽𝑇(𝑖) = 1,   1 ≤ 𝑖 ≤ 3                       (21) 

 Recursion:   𝛽𝑡(𝑖) = ∑ 𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)𝛽𝑡+1(𝑗)3
𝑗=1 , 1 ≤ 𝑖 ≤ 3, 𝑇 − 1 ≥ 𝑡 ≥ 1                     (22) 

 Termination: 𝑃(𝑂|𝜆)  =  ∑ 𝜋𝑖𝑏𝑗(𝑜1)𝛽1(𝑖),3
𝑗=1  1 ≤ 𝑖 ≤ 3                       (23) 

Since the forward algorithm is readily available to solve the first canonical problem, the computation of the backward 

variable 𝛽𝑡(𝑖) is important in solving other canonical problems. 

       The Viterbi algorithm (Decoding process): The decoding problem requires the inference of the optimal state sequence 

that is generated by the 𝑂 given 𝜆. The Viterbi algorithm is then employed to solve this optimization-related problem. The 

variable 𝛿𝑡(𝑖) is used to make known the highest probability within a path at time instant 𝑡, which accounts for the first 𝑡 

observations and ends in state (𝑠𝑖 = 𝑞𝑡). An array 𝜓𝑡(𝑗) is introduced to recover the state sequence which keeps track of 

argument for maximization of 𝛿𝑡(𝑖). By using 𝛿𝑡(𝑖), the optimal state 𝑞𝑡
∗ is calculated after the most likely state 𝑞𝑡 at time 

instant 𝑡 and is deduced as, 𝑞𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥1≤𝑖≤3 𝛿𝑡(𝑖) , 1 ≤ 𝑡 ≤ 𝑇  

 Initialization: 𝛿1(𝑖) = 𝜋𝑖𝑏𝑖(𝑜1), 1 ≤ 𝑖 ≤ 3                        (24) 

                             𝜓1(1) = 0                       (25) 

 Recursion: 𝛿𝑡(𝑗) = 𝑚𝑎𝑥1≤𝑖≤3[𝛿𝑖(𝑡 − 1) 𝑎𝑖𝑗|𝑏𝑗(𝑜𝑡)], 2 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑗 ≤ 3                 

 (26) 

                         𝜓𝑡(𝑗) = 𝑎𝑟𝑔 𝑚𝑎𝑥1≤𝑗≤3[𝛿𝑖(𝑡 − 1)𝑎𝑖𝑗] ,   2 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑗 ≤ 3               

 (27) 

 Termination: 𝑞𝑇
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥1≤𝑖≤3 𝛿𝑇(𝑖)                      (28) 

 Backtracking: 𝑞𝑡
∗ = 𝜓𝑡+1𝑞(𝑡+1)

∗ , 𝑡 = 𝑇 − 1, 𝑇 − 2, . . . , 1                       (29) 

The Baum-Welch algorithm (Training process): To maximize the probability of the observation sequence emitted by a 

given state sequence 𝑃(𝑂|𝜆), the Baum-Welch algorithm is employed to adjust the parameters of the proposed model. The 

algorithm is used to obtain the optimal model parameters, 𝜆∗ = (𝜋∗, 𝑨∗, 𝑩∗), through an iterative updating process until a 

terminating condition is reached. Also, the probability of being in state 𝑠𝑖  at time 𝑡 and state 𝑠𝑗  at time 𝑡 + 1 based on 

forward and backward variables is given as. 

𝜉𝑡(𝑖, 𝑗) = 𝑃(𝑞𝑡 = 𝑠𝑖 , 𝑞𝑡+1 = 𝑠𝑗|𝑂, 𝜆) =
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1)𝛽𝑡+1(𝑗)

𝑃(𝑂|𝜆)
                                                      

=
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1)𝛽𝑡+1(𝑗)

∑ ∑ 𝛼𝑡(𝑖)𝛼𝑖𝑗𝑏𝑗(𝑂𝑡+1)3
𝑗=1 𝛽𝑡+1(𝑗)3

𝑖=1

           (30) 

Therefore, the probability of the proposed model to be in state 𝑠𝑖 at time instant 𝑡 given as 𝛾𝑡(𝑖) as required in the training 

process is expressed as. 
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𝛾𝑡(𝑖) = 𝑃(𝑞𝑡 = 𝑠𝑖|𝑂, 𝜆) =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

𝑃(𝑂|𝜆)
                                                    

 =
∑ 𝛽𝑡(𝑖)3

𝑖=1

∑ 𝛼𝑡(𝑖)𝛽𝑡(𝑖)3
𝑖=1

                          (31) 

hence, Equation (31) is further expressed as. 

 

𝛾𝑡(𝑖) = ∑ 𝜉𝑡(𝑖, 𝑗)3
𝑗=1                           (32) 

 

The training process is then executed through the maximum likelihood estimator (MLE) in a step-by-step procedure as 

follows. 

Step 1: Initialize the proposed model's parameter 𝜆0 and calculate 𝑃(𝑂|𝜆0) with forward algorithm 

Step 2: Calculate the optimal parameters, 𝜆∗, for 1 ≤ 𝑖 ≤ 3 

 

𝜋𝑖
∗ = 𝛾1(𝑖)                      (33) 

𝑨∗ =  𝑎𝑖𝑗
∗ =

∑ 𝜉𝑡(𝑖,𝑗)𝑇−1
𝑡=1

∑ 𝛾𝑡(𝑖)𝑇−1
𝑡=1

, 1 ≤ 𝑖, 𝑗 ≤ 3                     (34) 

𝑩∗ = 𝑏𝑗𝑘
∗ =

∑ 𝛾𝑡(𝑗)𝑇
𝑡=1,𝑂𝑡=𝑣𝑘𝑡=1

∑ 𝛾𝑡(𝑗)𝑇
𝑡=1

, 1 ≤ 𝑗, 𝑘 ≤ 3                      (35)

  

Step 3: If 𝑃(𝑂|𝜆∗) > 𝑃(𝑂|𝜆), repeat step 2. Otherwise, terminate. 

 

Prediction decision: The prediction decision for the proposed 3-state HMM is presented in this section. The future state at 

time 𝑇 + 1, with observation 𝑜𝑇+1 is predicted using the decision rule expressed in (36) as: 

 

𝑜𝑇+1 = {

1, 𝑖𝑓 𝑃(𝑂, 1|λ∗) > 𝑃(𝑂, 0|λ∗) 𝑎𝑛𝑑 𝑃(𝑂, 1|λ∗) > 𝑃(𝑂, −1|λ∗)
0, 𝑖𝑓 𝑃(𝑂, 0|λ∗) > 𝑃(𝑂, 1|λ∗) 𝑎𝑛𝑑 𝑃(𝑂, 0|λ∗) > 𝑃(𝑂, −1|λ∗)

−1,   𝑖𝑓 𝑃(𝑂, −1|λ∗) > 𝑃(𝑂, 0|λ∗) 𝑎𝑛𝑑 𝑃(𝑂, −1|λ∗) > 𝑃(𝑂, 1|λ∗)
                          (36) 

 

where, 

𝑃(𝑂, 1|λ∗), 𝑃(𝑂, 0|λ∗) and 𝑃(𝑂, −1|λ∗) are the joint probabilities for busy, idle and fuzzy channel state, respectively at a 

future time 𝑇 + 1.  

The flow chart of the 3-state HMM spectrum occupancy and prediction technique for CRN is depicted in Figure 3. 

4. NUMERICAL RESULTS AND DISCUSSIONS 

4.1 Simulation Parameters 

 In this section, the performance of the 3-state HMM spectrum occupancy and prediction technique for CRN was 

evaluated using prediction accuracy (PA), probability of detection (PD) and spectrum utilization efficiency (SUE) through 

simulation in MATLAB R2022a software environment. PA determines the precision level of the outcomes of the 3-state 

spectrum prediction technique for the CRN. PD indicates the rate of the correctness of the detection of PU's presence when 

the channel spectrum is busy while SUE is a measure of the efficient usage of the channel bandwidth within the scarce 

spectrum. The comparison of the 3-state HMM with the 2-state HMM was performed with 104 occupancy samples in an 

ON and OFF manner generated using geometric distribution for each of the models while the channel of the PU follows the 

Poison distribution process. Table 1 presents the simulation parameters employed in this paper. 
 

Table 1: Simulation parameters 

Parameter Specifications 

Data length 10000 

Bandwidth 20 MHz 

Channel Rayleigh fading channel 

Noise AWGN 

Detector Energy detector 

Detection mode Root mean square 

SNR  0:2:20 

ED threshold 3 dB 

PFA 0.01:0.01:0.1 

Modulation scheme QAM 
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Figure 3:  Flow chart of the 3-state HMM technique for CRN 

 

4.2 Prediction Accuracy 

The values of prediction accuracy obtained from the 3-state and 2-state HMM spectrum occupancy and prediction 

technique were plotted against varying values of SNR and PFA in Figures 4 and Figure 5, respectively. In Figure 4, PFA of 

0.1 was chosen being the highest value of the decision threshold. The plot shows the value of PA increasing as the value of 

SNR increases for both 3-state HMM and the 2-state HMM techniques. However, at higher SNR values, the PA of the 

models becomes steady. At SNR of 10 dB, the accuracy value of 85.5% was recorded for the 3-state HMM while 61.7% 

was recorded for the 2-state HMM technique. In addition, with SNR value increased to 20 dB, the accuracy value of 99.5% 

and 75.4% were obtained for the 3-state HMM and the 2-state HMM techniques, respectively. This indicates that 

employing the 3-state HMM technique gives a better performance by reducing the errors because of the fuzzy state which 

helps to reduce the interference of the SU to the PU transmission.  

 
Figure 4: PA against SNR at PFA of 0.1 
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In Figure 5, the plot of PA against PFA is presented for the 3-state HMM technique for different fixed values of SNR. 

The plot revealed that the PA increases for varying values of PFA while significant improvement was recorded as the fixed 

value of SNR becomes higher.  At a low SNR value of 6 dB, with PFA values of 0.03, 0.06 and 0.09, the PA recorded were 

46.2%, 55.3% and 57.3%, respectively. With the SNR increased to 12 dB, 66.1%, 84.25% and 89.7% were obtained at 

0.03, 0.06 and 0.09 values of PFA, respectively while at high SNR of 18 dB, the values of PA gave 71.2%, 92.8% and 99.3% 

for 0.03, 0.06 and 0.09, respectively. This result indicated that higher accuracy of the channel state of the PU can be 

achieved if the fuzzy state in incorporated into the 2-state HMM technique for CRN to reduce the under-utilized and scares 

spectrum resources. 

 
Figure 5: PA against PFA at different SNR 

 

4.3 Probability of Detection 

Figures 6 and 7 present the plots of PD against SNR and PFA, respectively. The result obtained in Figure 6 shows that as 

the SNR values increase, the PD of the 3-state HMM and the 2-state HMM techniques also increase at PFA of 0.1. From 

the result, it was observed that at low SNR value of 6 dB value, the 3-state HMM technique recorded 0.6307 as against the 

2-state HMM technique with a value of 0.4721 which translates to an improvement in spectrum detection of about 25.1%. 

Similarly, at high SNR of 18 dB, the 3-state HMM technique recorded a detection score of 0.996 while 0.7074 was 

observed for the 2-state HMM technique which shows an improved detection of 29.1%. This result indicates that the 3-

state HMM technique can detect the channel state correctly thereby reducing the interference that may occur because of 

poor detection of the PU signal.  

 
Figure 6: PD against SNR at PFA of 0.1 

 

In Figure 7, the plot of PD against varying PFA values is drawn. The result obtained revealed that the detection increases 

with increase in the PFA. At a low SNR value of 6 dB, with PFA values of 0.03, 0.06 and 0.09, the PA recorded were 
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0.4036, 0.5718 and 0.6222, respectively. With the SNR increased to 12 dB, 0.5684, 0.8053 and 0.8764 were obtained at 

0.03, 0.06 and 0.09 values of PFA, respectively while at high SNR of 18 dB with the PFAs, the values of PA gave 0.642, 

0.9109 and 0.9913 for 0.03, 0.06 and 0.09, respectively. This result indicated that even at high PFA value, a better 

detection performance can be obtained to improve the channel occupancy state and prediction for the efficient utilization of 

the spectrum. 

 
Figure 7: PD against PFA at different SNR 

 

4.4 Spectrum Utilization Efficiency 

Figures 8 and 9 present the performance of SUE against varying values of SNR and PFA, respectively. The result 

obtained in Figure 8 revealed that the HMM technique for CRN increases with an increase in SNR at fixed PFA of 0.1. The 

plot shows that at SNR of 10 dB, the SUE value of 69.6% was observed for the 3-state HMM technique while 47.7% was 

obtained for the 2-state HMM technique. Likewise, at SNR of 20 dB, SUE value of 83.3% was observed for the 3-state 

HMM technique while 51.6% was obtained for the 2-state HMM technique. This indicates that the 3-state HMM technique 

enhances the spectrum usage efficiently and reduces the under-utilization of the available bandwidth.  

In Figure 9, the plot of SUE against PFA is drawn. The result obtained revealed that the usage of the spectrum increases 

with an increase in the PFA value. At a low SNR value of 6 dB, with PFA values of 0.03, 0.06 and 0.09, the SUE values of 

49.6%, 51.6% and 57.1% were obtained, respectively. With the SNR increased to 12 dB, 58.8%, 69.3% and 73.4% were 

obtained at 0.03, 0.06 and 0.09 values of PFA, respectively while at high SNR of 18 dB at PFA of 0.03, 0.06 and 0.09, the 

values of SUE gave 62.7%, 76.5% and 82.6%, respectively. This result indicated that with high value of PFA, the spectrum 

usage performance is significantly utilized making the 3-state HMM technique for CRN channel occupancy and prediction 

more robust and suitable for deployment in emerging networks. 

 
Figure 8: SUE against SNR at PFA of 0.1 
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Figure 9: SUE against PFA at different SNR 

 

5. CONCLUSION 
 This paper has proposed spectrum prediction technique in CRNs using 3-state HMM. The 3-state HMM is formulated 

from the 2-state model. The formulation involved a doubly stochastic process which combined an observable process and a 

hidden process. Expressions are derived for the initial state probability, the observation symbol probability distribution in 

each state and the state transition probability distribution in a 3-state HMM. The three canonical problems peculiar with 

HMM are solved for the proposed model to be suitable in real-network applications using forward and backward, Viterbi 

and Baum-Welch algorithms. The three hidden states identified in practical scenarios were "idle", "busy" and "fuzzy" states. 

The results obtained reveal that the 3-state spectrum prediction technique gives a better performance with improved 

prediction accuracy, probability of detection and spectrum utilization efficiency over the 2-state HMM. The outstanding 

performance of the proposed model was due to the fuzzy state incorporated in the development of the model. Consequently, 

the 3-state spectrum prediction technique has reduced both the interference to PU and false alarm in CRNs as well as 

reduce the wastage of resources. 
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