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Abstract: Many coastal cities in Nigeria and around the world are faced with the menace of flash floods and many times, it temporarily
disrupts the socio-economic activities of residents. This project aims to address this challenge by developing a smart web application
using machine learning to intelligently predict flash flood occurrence and offer recommendations. In order to achieve this, the random
forest machine learning algorithm is utilized to analyze environmental data such as rainfall, river levels, and soil moisture necessary for
the prediction of a flood which are captured in real-time using the OpenMeteo API. The machine learning model is then trained using
these environmental variables and integrated into a web application for easy user interaction. The frontend of the web application is
built with TypeScript, React.js, and Tree.js, providing an interactive and user-friendly interface for visualizing flood predictions, while
the backend is built using MongoDB and python (FLASK framework). The goal is to offer accurate, real-time flood forecasts to help
individuals prepare and respond effectively. This project demonstrates the integration of data science and web development to create a
practical tool for disaster risk management. The random forest model was evaluated using the standard metrics for evaluating machine
learning models and showed the following results; Accuracy of 96%, precision of 75% and recall of 91%. In addition, the model,
showed a Real-time latency of less that one second, which is indicative of a fast response to changing environmental data input. Since
flood conditions can change rapidly, this low real-time latency shows that the web is able to respond quickly to new sensor or satellite
data input.

Keywords: Disaster Management, Real-time Forecasting, Flood Prediction, Machine Learning, Nigeria Coastal regions, Intelligent
Web App

1. INTRODUCTION

Floods rank among the most devastating natural phenomena, doing significant harm to lives, property, and the
ecosystem. The increasing frequency and intensity of flood events especially in Nigeria’s coastal cities like Lagos, parts of
Bayelsa, Rivers, Cross River and Delta States in Nigeria are partly attributed to climate change, requiring an urgent need
for effective flood prediction systems so as to reduce the negative effects on the social and economic wellbeing of the
people [1]. In areas where abrupt, violent floods are common, it is critical to develop a reliable flash flood prediction
system to protect people, property, and the environment. Because of their sudden start and catastrophic effects, flash floods
remain a serious hazard to communities all over the world.

Researchers and meteorologists have indicated that technical instruments, like remote sensing, radar systems, and
weather satellites, provide essential data for enhancing the accuracy of flood predictions [2]. Hydrological models, like the
Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS) and the Soil and Water Assessment Tool
(SWAT), simulate the movement of water through a watershed [3]. These models assess runoff and possible flooding by
taking into account rainfall data, land cover, and soil characteristics. Moreover, rainfall-runoff models that quantify the link
between precipitation and runoff include the SCS Curve Number technique and the Rational technique [4].

Artificial intelligence (Al) and machine learning approaches have also become more popular in recent years for flash
flood prediction. Using historical data, these techniques, such as decision trees and neural networks identify trends and
forecast the probability of a flood [5]. These Machine learning and Al systems have continued to evolve from empirical
approaches to sophisticated, data-driven systems that are able to integrate meteorological, hydrological, and geographical
data, thereby enhancing the accuracy and reliability of the prediction models, which ultimately aids in mitigating the
impact of flash floods [6]. While much advancement has been reported, a major problem still remains the inaccessibility of
these prediction models to ordinary citizens for usage. Also, the existing flash flood prediction models often struggle to
provide high-resolution forecasts both spatially and temporally. This limitation stems from the inherent complexity of
meteorological and hydrological processes, making it challenging to capture rapid changes in weather patterns and their
localized impacts. The integration of diverse data sources, including meteorological, hydrological, and geographical
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information, remains a critical challenge. Achieving seamless interoperability among these datasets is crucial for
developing holistic and accurate prediction models. The lack of standardized protocols for data sharing and collaboration
across agencies further exacerbates this issue. Real-time assimilation of data poses a significant hurdle in flash flood
prediction systems. The ability to incorporate up-to-the-minute information from various sources, such as remote sensing
and weather satellites, is crucial for enhancing the timeliness and reliability of predictions. The computational demands and
potential delays in data acquisition contribute to this challenge. Although Al and machine learning approaches have the
potential to increase flood prediction accuracy, their general integration into flash flood prediction systems is still not very
popular. To fully utilize Al in improving prediction capabilities, obstacles pertaining to model interpretability, processing
demands and the requirement for substantial dataset training must be removed.

The research work addresses these challenges by deploying REST APIs to capture real-time weather variables which
are fed into the machine learning model for a more reliable prediction, while at the same time presenting the results to
users with an easy to use web interface for easier accessibility.

The contribution of this research work can be viewed in three areas. First, it shows the integration of real-time
environmental variables obtained from the OpenMeteo APl with machine learning algorithms, this ensures that the
prediction system continually and dynamically adapts to changing weather and environmental conditions. Second, it
presents a comparative analysis of different machine learning algorithms; Random Forest, Decision Tree, Logistic
Regression, and Support Vector Classifier, to justify the choice of Random Forest for this application. Third, the study also
demonstrates the deployment of the trained model into a practical web application with an intuitive and easy to use
frontend with a scalable backend, thereby bridging the gap between advanced flood prediction models and real-world
accessibility for at-risk communities.

2. RELATED WORKS

Previous research works have reported different techniques for flood disaster management utilizing different
technologies. In the research work by Johnson & Gobo [7], in Port Harcourt Metropolis, Nigeria, the researchers conducted
an evaluation and modeling of the risk of flash floods due to excessive rainfall and soil permeability. The work utilized
rainfall data from the University of California Centre for Hydrometeorology and Remote Sensing and the Nigerian
Meteorological Agency, which covered the period from January 1981 to December 2016. The permeability, moisture
content, and particle size distribution of soil samples collected from 48 sites in Port Harcourt were examined. The study
used a GIS framework that included a Digital Elevation Model produced by the Shuttle Radar Topography Mission, with
ArcGIS serving as the main analysis tool.

A review of flood risk analysis in Nigeria was presented by Olajuyigbe et. al. [8]. The study focused on assessing flood
hazards in Mile 12, Lagos, Nigeria, with emphasis on identifying the key factors contributing to recurrent flooding in the
study area. The research utilized methods such as household questionnaires, key informant interviews (especially with
Lagos State Physical Development Authority officials), participant observation, and data from secondary sources. The
findings revealed that persistent flooding in Mile 12 is attributed to consistent high rainfall, water releases from the Oyan
dam in Ogun state, blockage of drainage channels by refuse, narrow river channels, and construction along floodplains.
Recommendations included creating sufficient setbacks for streams, constructing roads with robust drainage systems,
channelization, and building more dams to alleviate the flooding issue.

A machine learning-based flood prediction model was introduced in Lawal et al. [9]. The study concentrated on flood
prediction in Nigeria's Kebbi state utilizing machine learning algorithms. The researchers evaluated the effectiveness of
three machine learning algorithms—Decision Tree, Logistic Regression, and Support Vector Classification (SVR)—using
a historical rainfall dataset that covered 33 years. The goal was to develop a model that could forecast floods in Kebbi State
and might be used in other high-risk flood states in Nigeria. According to their findings, Logistic Regression was the most
accurate method, outperforming the other two in terms of accuracy and recall.

The Decision Tree also performed well, surpassing the Support VVector Classifier, with reasonable accuracy and below-
average recall. Notably, the Support Vector Classification exhibited poor performance with a small dataset, yielding
below-average accuracy, a recall score of 0, and an average ROC score. The findings highlight the potential of machine
learning for flood prediction, with Logistic Regression standing out as the most effective model in this specific case study.
However, Their work relied on only the historical datasets for both training and testing on the machine learning models
which is prone to Their work relied on only the historical datasets for both training and testing on the machine learning
models, which is prone to overfitting and may not generalize well to unseen or future data, a limitation which is solved in
this work.

Thiemig et al [10] introduced the African Flood Forecasting System (AFFS), a medium-range ensemble system
designed for probabilistic flood forecasting in African river basins with lead times of up to 15 days. The system’s
performance was evaluated in hindcast mode for the flood-prone year 2003, using ground observations from 36 sub-
catchments and flood archive reports. AFFS successfully detected around 70% of reported flood events, particularly
excelling in long-duration, large-scale riverine floods. However, its performance was limited for short-lived, small-scale
events. A case study on the "Save flooding" event highlighted AFFS’s accuracy in forecasting flood timing and severity,
clear output products, and its ability to issue warnings in ungauged basins.
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Table I: Summary of related works and gap analysis

Author Tittle Methodology Used Limitations
Oloruntoba, Flood Prediction in Nigeria Using Bagged CART, Random Complex models; limited
Taiwo & Ensemble Machine Learning Forest, Gradient Boosting, interpretability

Agbogun (2023)

Johnson &
Gobo (2021)

Lawal, Yassin &
Zakari (2021)

Thiemig,
Bisselink,
Pappenberger &
Thielen (2015)

A comprehensive assessment and
modeling of flash flood risk in
Port Harcourt Metropolis,
Nigeria.

Flood prediction using machine
learning models: a case study of
Kebbi state Nigeria

A pan-African  medium-range
ensemble flood forecast system

XGBoost, C5.0

GIS-based approach to
assess flash flood risk in
Port Harcourt Metropolis,
Nigeria.

Decision Tree, Logistic
Regression, and Support
Vector Classifier

Integrated hydrological
model (LISFLOOD) with
ensemble  meteorological
predictions

Household questionnaires,

The model’s effectiveness relies on
certain assumptions, and if these
assumptions do not accurately
represent the real-world conditions, it
might affect the validity of the flash
flood risk assessment.

Relied solely on historical datasets;
limited generalization

Limited performance for small-scale
and short-duration flood events

Results may be biased due to reliance

Olajuyigbe, A review of flood risk analysis in interviews, and secondary on self-reported data
Rotowa & Mile 12, Lagos, Nigeria data
Durojaye (2012)

In Table 1, the authors' names, the focus of their work, the methodologies used, and the limitations of each study are
presented. This format allows for a concise comparison of the different authors' contributions, their approaches, and the
potential limitations of their work. The limitations of the reviewed existing works could be summarized as doubtful quality
of datasets collected through questionnaires and failure to deploy these models into easy to formats for end users. This
research work overcomes this by deploying REST APIs to capture real-time weather variables, these are then passed
through the necessary steps of feature selection, cleaning, and training for a more reliable prediction, while at the same
time presenting the results to users with an easy to use web interface for easier accessibility. The application of machine
learning to solving problems across other domains has also been reported for example; for intrusion detection in computer
systems ([12, 13]). In drilling optimization by Acheme et al. [14] etc.

3. MATERIALS AND METHODS

The flash flood prediction system is designed by integrating machine learning with modern web technologies to create
an effective and user-friendly tool. The backend uses Python, taking advantage of its strong libraries like Scikit-learn for
implementing machine learning. Random Forest algorithms are particularly used to predict flash floods based on various
data inputs such as rainfall, river levels, and soil moisture. Random Forest is chosen for its accuracy and ability to handle
complex data relationships. For the frontend, TypeScript and React.js are used to develop a scalable and easy-to-maintain
user interface. Tree.js is included to provide 3D data visualizations, making it easier for users to interact with the prediction
models and data. This combination ensures the system is both powerful and easy to use, offering real-time updates and
dynamic visualizations to help in early warning and flood risk management. The architecture balances heavy backend
processing with a responsive frontend, creating an effective tool for predicting and managing flash floods.

3.1 System Architectural Design

The design of the flash flood prediction system carefully integrates a strong backend with an intuitive frontend
interface. Python is used at the core of the backend, utilizing powerful libraries like Scikit-learn for machine learning tasks,
specifically employing Random Forest algorithms to predict flash floods based on various data inputs such as rainfall, river
levels, and soil moisture. This method ensures high accuracy and reliability in the predictions. On the frontend, TypeScript
and React.js are combined to develop a scalable and maintainable user interface. Additionally, Tree.js is integrated to
facilitate sophisticated 3D data visualizations, enhancing user interaction and data comprehension. The system is designed
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to offer real-time updates and dynamic visualizations, aiding in early warning systems and effective flood risk management.
This architecture (Figure 1) strikes a balance between the demanding computational requirements of the backend and the
responsive, user-friendly frontend, resulting in a powerful tool for predicting and managing flash floods.
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Figure 1: System architectural design

3.2 Data Collection

Historical weather data was retrieved from the Open Meteorology Weather API, a free and open-source weather data
platform. The API provides access to a vast repository of historical weather data, spanning multiple decades. Using the
API's query parameters, | specified the desired location, date range, and weather parameters (e.g., temperature,
precipitation, wind speed) to extract the relevant data. The API returned the data in a JSON format, which was then
processed and stored in a mongo database. The Open Meteorology Weather API offers a robust and reliable source of
historical weather data, enabling me to train the prediction model.

In total, 15,320 records were collected from the OpenMeteo API, this covered a period of five years (2018-2023). Each
of the records consisted of multiple features, including rainfall intensity, temperature, humidity, river discharge, soil
moisture, wind speed, and visibility. These features were selected based on their established relevance to hydrological
processes influencing flash flood events. The cleaned dataset was divided into training (70%), validation (15%), and
testing (15%) subsets.

3.3 Data Flow Diagram

Figure 2 is the data flow diagram which shows the workings of the system. Initially, the user provides their location data
to the Ul Management, which then passes it to the Weather Data Retrieval component. This component requests current
weather information from the Weather API and relays the obtained data back to the Ul Management. Subsequently, the Ul
Management combines the user's location and weather data and sends them to the Prediction Request route. This component
interacts with the Prediction Engine, which utilizes a Random Forest model to generate flood predictions. These predictions
are then sent back to the Prediction Request route, which forwards the results to the Ul Management for the user to see.
Within the Prediction Engine, there are steps for data pre-processing and result formatting to ensure the predictions are
precise and user-friendly.

The use case model for the flood prediction system details the main interactions between the user and the application,
emphasizing essential features (Figure 3). Users can permit the system to access their location, request up-to-date weather
information, and start a flood prediction. In response, the system retrieves weather data from an external Weather API,
processes it alongside the user's location using the Prediction Engine, and creates flood predictions using a Random Forest
algorithm. These predictions are then formatted and shown to the user. This model demonstrates the system's ability to
deliver precise and timely flood predictions based on the user's location and real-time weather conditions
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Figure 3: Use case model

The database model for the flood prediction system is based on MongoDB and centers around one main collection that
contains historical flood data. Each entry provides a full picture of previous flood events, which helps the Prediction
Engine identify patterns and enhance prediction accuracy. By using MongoDB's flexible schema, the system can
effectively store and access this historical data, ensuring that it can make strong and dependable flood predictions using
both past events and current weather information.

4.1 Data Collection

4. RESULTS AND DISCUSSION

To collect data from the OpenMeteo API for the flash flood prediction system, we began by signing up on the
OpenMeteo website to obtain the api url, which granted access to their weather data services. With this url, a PostMan is
used to send the HTTP GET requests to the OpenMeteo API endpoints. The request is configured to query for specific data
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such as historical rainfall intensity, temperature, humidity, and other relevant meteorological information for the targeted
geographic areas prone to flash floods. The API requests were set up to run at regular intervals to ensure real-time data
collection. The responses, returned in JSON format, were parsed to extract the necessary data fields, which were then
cleaned and validated to remove any anomalies or missing values. The validated data was subsequently stored in a
MongoDB database, structured to support efficient querying and integration with the machine learning models used for
flood prediction. This automated data collection process ensured a continuous and accurate flow of weather data, which is
important for timely and precise flash flood forecasting. Figure 4 shows the fields/column headers of the dataset retrieved.

To better understand the dataset, visualizations were generated. Figure 5a shows a histogram of rainfall intensity
distribution, while Figure 5b shows the correlations among the main features of the dataset which are; rainfall, temperature,
humidity, and river discharge. From Figure 5b, Strong positive correlations can be clearly observed between rainfall and
river discharge, while negative correlations were noted between temperature and soil moisture. These insights confirm the
relevance of selected features to flood prediction.

Flood Prediction System\
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Figure 4: Database design
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4.2 Model Training and Implementation

The Scikit-learn module in Python was used to train a random forest model. The obtained data was first cleaned,
normalized, and divided into training and testing sets. To enhance performance, the hyperparameters were adjusted using
cross-validation on the training data. In addition to the the Random Forest algorithm which was selected due of its
robustness against overfitting and its capacity to manage intricate, non-linear interactions, three other machine learning
algorithms were also modelled for comparison and evaluation purposes.

After training the model, the model was evaluated for its effectiveness with the testing data, focusing on metrics like
precision, recall, and F1 score. Once satisfactory results were achieved, the model was deployed into production. This
involved integrating it with the backend of the prediction system and setting up an API endpoint to receive input data and
return predictions, ensuring the system was scalable and responsive in real-time.
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To maintain prediction accuracy over time, continuous monitoring and updating of the model to adapt to changing
environmental conditions was implemented. Additionally, we exported the trained model using the Python joblib package
for easier access. This comprehensive approach helped develop a reliable and effective flash flood prediction system,
providing valuable insights for disaster preparedness and risk management.

To justify the selection of Random Forest, we compared its performance against three others widely used machine
learning algorithms: Decision Tree, Logistic Regression, and Support Vector Classifier (SVC). The comparison used the
same dataset split and evaluation metrics. Table 2 presents the results.

Table 2 — Performance comparison of machine learning models

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%0)
Decision Tree 91.2 71.0 83.5 76.7
Logistic Regression 89.8 68.4 80.1 73.8
Support Vector Classifier 87.6 65.0 78.2 70.9
Random Forest 96.0 75.0 91.0 82.2

The Random Forest algorithm achieved the highest accuracy, recall, and F1-score, demonstrating superior performance
in detecting positive flood cases. This robustness and generalization ability make it more suitable for real-time deployment
compared to the other models.

4.3 Application Design

The application design stage included the development of the various components of the system. The Model-View-
Controller (MVC) architecture was utilized in this study. It partitions an application program into three layers, each with
different functions.

i. Model Layer: This is not the same as the database design. It is the creation of the layer of code which provides access
to the database.

ii. Controller Layer: This is likewise the business rationale layer. In a web based application, for example, that
actualized in this study, the controller layer handles the progression of the site pages as a client executes various
tasks.

iii. View Layer: This layer incorporates the different windows, interfaces, structures and so on that the client cooperates
with. This layer houses the code that speaks with the controller object.

In this study we implemented this via Representational State Transfer (REST) API architecture where the front-end
view is displayed with React JS depending on data received from the controller. The implementation phase of the systems
development life cycle (SDLC) is usually the most time- consuming period of the entire life cycle. In fact, implementation
is the accomplishment of a technical specification or algorithm and software module, through computer programming and
deployment. At this stage, the physical design specifications were transformed into a working computer code. After which
the code passed through the testing stage until the vast majority of the errors and bugs were distinguished and rectified, the
system was then installed.

The prediction results are incorporated into the Home Page (Figure 6) through a modular component that interacts with
the backend via REST API calls. Once a user requests a prediction, the system retrieves real-time weather variables,
processes them through the trained model, and displays the prediction outcome in an interactive modal. To ensure a
structured implementation, the Software Development Life Cycle (SDLC) methodology was adopted. Specifically, the
iterative prototyping approach was used, allowing continuous refinement of the user interface, data integration, and
backend logic. This systematic adoption of SDLC not only facilitated the emergence of a new integrated architecture but
also ensured that the final system met usability, reliability, and scalability requirements.

Figure 7 are pop ups where a button for prediction resides, if clicked a request is sent to the backend which calls the
model and returns various results and outputs as shown in Figures 8 — 12.

5. CONCLUSION

This research work has reported a flash flood prediction system which is designed to provide accurate and real-time
flood forecasts to help communities prepare for and respond to flash floods. In designing the system, python programming
language was used for backend processing, which was utilizing selected machine learning algorithms in order to analyze
the environmental data such as rainfall intensity, river water levels, and soil moisture content. We developed the frontend
of the system with TypeScript, React.js, and Tree.js, this provided an intuitive and interactive interface for users to
visualize flood predictions and receive timely alerts. By integrating these machine learning models with modern web
interfaces, our system aims to enhance disaster risk management and improve community preparation against flash floods.

In conclusion, the flash flood prediction system which we presented in this work, combined selected machine learning
algorithms with modern web development tools to provide an effective tool for accurate and timely flood forecasts. By
utilizing Python for data analysis and processing, along with selected machine learning algorithms, the system ensures high
accuracy in predicting flood events. The user-friendly user interface which was built with TypeScript,
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Figure 6: Home page with an interactive 3d model of the earth globe.

Figure 7: Web interfaces showing operation of the app
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Figure 9: A component installed on the homepage that presents real-time weather data according to the user's current
location.
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in a graph component mounted on the home screen.
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React.js, and Tree.js, also provides an easy to use interactive platform for visualizing data and receiving real-time alerts.
This integration is helpful as it improves the efficiency of disaster response and also enhances community preparedness
against flash floods. The research work demonstrates the potential of technology in mitigating the impacts of natural
disasters and safeguarding lives and property. The comparative analysis of the different machine learning algorithms
further validates the choice of Random Forest as the optimal algorithm for this task, outperforming Decision Tree, Logistic
Regression, and Support Vector Classifier across all the selected performance metrics.

For future improvements and wider adoption, it is recommended that the flash flood prediction system incorporate
additional data sources, such as satellite imagery and social media feeds, to enhance prediction accuracy. Implementing
machine learning models that continuously learn from new data could further refine the system's predictions over time.
Collaboration with local governments and emergency response teams can facilitate better data sharing and integration,
improving overall system efficacy. Additionally, developing a mobile application version would increase accessibility,
allowing users to receive real-time alerts and updates on the go. Regular updates and user feedback should be integrated to
ensure the system remains relevant and effective in diverse and changing environments.
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