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Abstract: In this study, we propose NaijaTrafficNet, a novel custom Convolutional Neural Network (CNN) architecture designed for 

robust traffic sign classification under challenging Nigerian road conditions, characterised by poor lighting, occlusion, and non-

standard signage. To address data scarcity, we merged two public datasets, the Kaggle Traffic Sign Dataset Classification and the 

German Traffic Sign Recognition Benchmark (GTSRB) resulting in a unified dataset of 12,472 images across 43 classes. Extensive 

preprocessing, including resizing, grayscale conversion, histogram equalisation, and data augmentation, was applied to enhance 

generalisability. The model was trained from scratch using the Adam optimiser and evaluated on a held-out test set of 795 images. 

NaijaTrafficNet achieved a test accuracy of 94.72% and a weighted F1-score of 94.48%, demonstrating high performance, particularly 

for regulatory signs (e.g., stop and speed limits). The architecture is lightweight, enabling real-time inference suitable for deployment in 

resource-constrained environments. Limitations include misclassification of visually similar signs (e.g., 50 km/h vs. 60 km/h). This work 

contributes: (1) an open-source preprocessing pipeline for African traffic sign data, (2) a novel CNN architecture, and (3) empirical 

validation of deep learning for non-standard signage. Future work includes comparative benchmarking and synthetic data generation. 

Keywords: Traffic Sign Recognition, Convolutional Neural Networks, Data Augmentation, Deep Learning, Nigerian Road Conditions 

1. INTRODUCTION 

Sign classification for traffic sign recognition is an essential ingredient in traffic safety, and it also avoids accidents 

occurring due to misinterpretation of road signs [1]. In Nigeria, where traffic conditions are unpredictable, and some 

signage may not stick to the standard, many will experience collisions, wrong-way driving, and other violations due to sign 

misreadings [2]. While the current practice of recognising traffic signs as a manual driver observation can work, it is slow 

and hardly error-free, especially in high-stress driving situations [3]. It is essential to have automated systems that can 

accurately identify and classify traffic signs in real-time. Convolutional neural networks (CNNs) have since replaced rule-

based or hard-coded computer vision techniques, providing much better accuracy for image classification [4]. 

CNN's traffic sign classification models improve road safety and self-driving systems and ensure robust handling of 

road signage by both human drivers and AI [5,6,7,8]. 

The traffic sign classification model has a single purpose for accurately grouping Nigerian traffic signs: to be a real-

time assist rule for drivers and autonomous navigation systems [9]. Besides helping individual drivers, such models can 

also help traffic enforcement agencies by leveraging automatic detection of violations (i.e., recognising speeding 

infractions by mandated speed limit signs) [10]. Moreover, they could be incorporated into the bright city concept, 

providing dynamic traffic management and adaptive signal control [11,12,13]. However, reliable classification in Nigeria 

has inherent difficulties owing to the difficulty of different road conditions (poor signs, non-standard design and where 

signs might be occluded by vegetation or other obstructions) [14]. 

The conventional way of feature extraction from traffic signs is manual, i.e. HOG + SVMs [14]. Though these methods 

were very successful for a controlled environment, real-world variability is hard to achieve in locations such as Nigeria, 

where lighting conditions, sign deterioration, and occlusions are the norm [15, 46]. These methodologies, particularly deep 

learning-based CNNs, have made strides in this field by extracting discriminative features directly from raw data 

[17,18,19,20]. The hierarchical patterns in images are well-suited for CNNs, and they perform exceptionally well with 

traffic sign classification under challenging conditions [21].  

While CNNs have advantages, hurdles arise when implementing traffic sign classifiers by neural networks in Nigeria. 

Lighting, from direct sunlight to poorly lit roads at night, can significantly influence model performance [22]. Weather, 

like rain or dust [23], further obscures visibility, as well as weather-related wear of signs (physical damage) or obstructions 
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(graffiti and dirt) [24]. The salient problem is even more pronounced because of the paucity of non-local traffic sign 

datasets, and we need to train models with good generalisation ability (i.e., high quality) [25].  

Moreover, the ever-increasing computational demand from deep learning models creates the dilemma of real-time use 

cases [26]. Further low-latency processing for driver assistance systems is essential now that computational availability in 

resource-constrained environments [27]. CNNs tackle several of these by extracting features and being reasonably 

independent, feature-wise, from differences in image quality [26]. As they are hierarchical, this allows them to learn low-

level features such as edges and texture before higher-level representations like shapes, giving them great aptitude for 

traffic sign recognition [27].  

Unlike traditional approaches, unlike conventional methods, CNNs can learn sign styles in non-standard and 

deteriorated conditions (those faded or half-covered signs not found in usual training data) [28]. This adaptability is of 

utmost importance for Nigerian roads, where standardisation is absent primarily [29]. In addition, thanks to lightweight 

CNN architectures, the faster inference speeds necessary for real-time applications are currently possible [30,31,32,33]. 

CNN Model (Training): For CNN to predict traffic signs for classification in this work, we used the baseline model 

NaijaTrafficNet instead of auxiliary algorithms or ensemble methods [31,34]. This simplified process eliminates the need 

for expensive models and directly features classification from input images by balancing model complexity with efficiency 

[32]. By not going the hybrid architectures way, we guarantee the model can compute fast and reach high accuracy [35]. 

To train the system, we utilise a curated dataset of two public datasets: the Traffic Sign Dataset Classification [36] and the 

German Traffic Sign Recognition Benchmark (GTSRB) [37]. We have developed a unified dataset through stringent 

preprocessing and standardisation, allowing universal generalisation over dissimilar sign designs and views. Using data 

augmentation methods to imitate challenging scenarios from the real world, such as occlusions and lighting variations, 

enhanced the model’s robustness [38,39,40,41].  

This research aimed to find a feasible solution for traffic sign classification in Nigeria's road conditions. This drives 

driver assistance systems and more significant traffic management initiatives [42]. He solved the dataset constraints via 

targeted augmentation and transfer learning for competitive accuracy in real-time [43,44].  

This shows that a single CNN architecture can deliver excellent performance without all the complexity needed for 

ensembles or region-specific training data. Future work may investigate transformer-based vision architectures for 

occluded signs and/or synthesise better training data to increase diversity [22, 45]. This work provides an essential step 

towards robust and context-aware traffic sign recognition systems adaptable for Nigeria and other tropical climates 

[46,47,48,49].  

Existing traffic sign recognition models available are primarily trained on well-augmented datasets like GTSRB, which 

reflect European standard. These models often fail when deployed in regions with degraded or non-standard traffic signs, 

such as Nigeria. Furthermore, there is a lack of native Nigerian traffic sign datasets, limiting the development of context 

aware systems. 

This study aims to develop and evaluate NaijaTrafficNet, a custom CNN architecture tailored for efficient and accurate 

traffic sign classification under Nigerian road conditions, using a merged dataset to simulate real-world scenarios. 

The remainder of this paper is organised as follows: section 2 reviews related works in traffic sign classification, 

Section 3 details the methodology, including dataset, preprocessing, and model architecture, Section 4 presents the results 

and discussion. Section V concludes the study and outlines recommendations for future work. 

2. LITERATURE REVIEW 

Traffic sign recognition (TSR) has been widely studied in the computer vision community, and many efforts have been 

made to enhance accuracy and robustness in extreme conditions. The first efforts were built around traditional feature 

extraction techniques such as Histogram of Oriented Gradients (HOG) [14], followed by Support Vector Machines (SVM). 

The two methods were quite effective in controlled environments that simulated real-world conditions such as occlusions, 

lighting changes, or standard demographics for sign design. 

Many recognised benchmark datasets have played crucial roles in driving the progression of system development for 

Traffic Sign Recognition (TSR). The German Traffic Sign Recognition Benchmark (GTSRB) [37] provides an extensive 

and exhaustive set of standardised traffic signs in diverse conditions. Nonetheless, as highlighted in [50], models trained on 

datasets like GTSRB that live in structured regions (e.g. Nigeria) are likely not worldwide significant from real traffic in 

varying guises because signs can have faded edges, be missing or be damaged. Recent approaches have relied on dataset 

augmentation and transfer learning techniques to tackle it. For example, [38] illustrated that in the wild corruption was 

critical to model robustness to synthetic data augmentation and [28] indicated that the collaborative use of multiple datasets 

increases cross-regional transferability.  

MobileNetV2 [32] is an efficient CNN architecture suitable for real-time applications such as traffic sign recognition, 

which trade-off some accuracy with MobileNet [31], and should be able to work in vehicle-embedded systems with a low 

computational efficiency. Similarly, [21] proposed EfficientNet, aggregating the scaling factors on model depth, width, and 

resolution for improved performance with fewer parameters.  At least the models have been tested heavily on regular 

traffic sign baskets with well-kept infrastructure and may not be as effective in severely under-resourced areas. 

Only a few studies are concerned with African traffic sign recognition. [2,16] Required discussion: This has been a 

great challenge with inconsistent signage and environmental elements (dust, bad lighting, etc.). Even though [24] tried to 

improve detection performance for low-visibility settings by resorting to contrast enhancement methods, unlike what was 
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proposed in Nigeria, due to multi-faceted non-standard signs. As transformer-based vision models [22] have recently 

demonstrated capabilities on occluded or distorted objects under various conditions, improving the prediction of TSR in a 

non-structured environment is a possible direction. However, the computational demands of such solutions limit them to 

real-time operation [33,47]. 

Using the GTSRB [37] and the Traffic Sign Dataset Classification [36] dataset, we can generate a more varied training 

set as an upcoming step towards computationally efficient training models. We overcame previous works that used one 

dataset in our approach due to intensive preprocessing steps, which would help enforce image conformity. Thus, one can 

back-apply this method for Nigerian traffic signs training. We also present NaijaTrafficNet, a lean CNN architecture 

trained from scratch for efficiency and effectiveness in low-resource settings. This is unlike ensemble methods [3,10], 

which are more computationally expensive. Contrarily, we concentrate on a single model solution that strikes a 

performance-speed balance while filling critical lanes missed in [25], a real-time use case within a confined environment. 

Our model overcomes limitations in [50] and [23] of prior work, where no transfer learning or targeted data 

augmentation was used to enhance the faded, occluded and non-standard signs, a shortcoming pointed out by the 

hyperopes in [23]. In addition, our preprocessing pipeline minimises certain kinds of dataset bias [29], a common pitfall 

when mixing multiple sources. This shows remarkable improvement in rare sign detection as shown by the F1-score of 

94.48% (Weighted) in test and test accuracy of 94.72. Our lightly structured model body properly deals with key efficiency 

issues from past works [30,31,34,51], which makes it a reasonably strong classification performance. 

Recent work by De Guia and Deveraj [47] demonstrates the effectiveness of YOLO-based architectures for urban sign 

recognition, though their computational overhead may be prohibitive in embedded Nigerian contexts. Similarly, 

Alghmgham et al. [46] created a region-specific dataset for Arabic signs, underscoring the need for local data a gap our 

work addresses through augmentation and fusion. Bulla [51] and Gollapudi et al. [52] further validate that hybrid CNN-

SVM or saliency-enhanced pipelines improve robustness, yet our end-to-end CNN avoids such complexity while 

maintaining competitive accuracy.  

3.  METHODOLOGY 

3.1 Dataset Acquisition and preparation 

Kaggle provided two publicly available traffic sign datasets for training and testing: the German Traffic Sign 

Recognition Benchmark [37], GTSRB and the Traffic Sign Dataset Classification from Kaggle [36]. These data were 

chosen carefully and merged to form a unified set of traffic sign images representing Nigerian road conditions. The merged 

dataset contains 12,472 images per traffic sign across 43 classes; this is a robust base for model training. The Benefits of 

the combined dataset for traffic sign classification are: 

i. GTSRB: Standardised images of standardised traffic signs. 

ii. More examples & variations from the Kaggle Datasets. 

iii. Diversity to enable model generalisation.  

Each image was labelled properly with the label of the traffic sign it illustrates. Therefore, the data could be fed into a 

supervised learning method. The dataset contains samples of different sign types, such as: 

i. Stop and speed limits. 

ii. Warning signs (curves, pedestrian crossings). 

iii. Information signs (waypoints, points of interest). 

Extensive preprocessing steps, including resizing, normalisation, and augmentation, were implemented on the image 

data so that the collected data is cleaned as much as possible and is ready to be analysed. We divided the dataset into three 

parts so the model can generalise better to real-world scenarios: training set (80%), 20% for validation (30% of this 

validation set holds out for testing). This splitting was done to prevent overfitting the model while training, so that during 

unseen traffic signs, it works well. 

3.2 Data Preprocessing 

Images were pre-processed before feeding them into the neural network. Augmentation was done during training, so 

the model never saw the same image twice. This made the model trained very well on unknowns while maintaining high 

data quality. Together, this preprocessing worked great for both input pipelines and, hence, chunked the content most 

efficiently (i.e. optimally) so that the model could not learn and be overfitted with every step to the next layer. 

Firstly, the dataset underwent image normalisation (all images to 128x128 pixels). The standardisation strengthened the 

two foundation pillars: Outliers were stripped and gave us an equal denominator for dataset boarding without adding 

computational load or data expressiveness. This simple resolution of holding on to a bit of information to classify correctly 

and not necessarily more computational overhead was picked on purpose. After resizing, the images were transformed to 

grayscale (converting from RGB to 1 channel). The transformation simplified the cost since they were converted from a 3-

channel to a single-channel input. Most importantly, analysis revealed that greyscale conversion kept sufficient shape and 

texture information for driving image classification and discarded potentially colour-dependent distractive mean colour, 

which played a vital role in this case. 

In the second step, the improvement is histogram equalisation for all images to equate their contrast by taking the 

average, since histogram equalisation ensures that each image was in a better state as a preprocessing technique. This is 

one of the best ways to improve low-contrast photos, making the features so prominent that the model will be much easier 
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to differentiate between these traffic sign categories. Put it this way: equalisation processed flattened pixel intensities over 

a whole range of pixel values to make those edges and patterns slightly bigger/clearer. 

Post-processing normalisation was another preprocessing step in which all pixel values of the images were normalised 

to [0,1], i.e., divided by 255. This step was vital in having multiple tasks; it steadily improved the model's learning in the 

training process and restrained a (possible) overflow, making it converge faster. The input space was grounded with 

normalised values so the neural network could learn a more uniform distribution. 

Last, we did fairly high data augmentation as part of the training and as a first step to avoid overfitting. This quadrilled 

some transformations: 

i. Rotation: For degaussing angles that tend to vary slightly between images, we rotated the images between + or -15 

degrees. 

ii. Flipping: We horizontally flipped all classes of some signs so that we have 2 training samples per category. 

iii. Shifting: Small horizontal & vertical shifts were applied to the images to simulate the variations in image capture. 

iv. Zooming: Augmenting data by zooming in/out on random images has raised the model's learning scale-invariant 

patterns trained on signs at random resolutions. 

3.3 Model Architecture 

Convolutional Neural Network (CNN) is designed to learn spatial and hierarchical features from images, and the 

classification model is thus constructed. NaijaTrafficNet is a custom CNN designed for efficiency and robustness. The 

architecture consists of the following layers: 

1) Input Layer: Accepted images with a shape of (128,128,1), representing the grayscale format. 

2) Convolutional Layers: Multiple 2D convolution filters were applied to extract spatial patterns. The convolution 

operation is given below in Equation 1. 

𝑍 =  𝑊 ∗ 𝑋 + 𝑏                                                                                                                                                                                 (1) 

Where 𝑊 represents the kernel (filter), 𝑋 Is the input image, and 𝑏 Is the bias term. Stride and padding were set to 

maintain the spatial resolution. 

3) Activation Function: The Rectified Linear Unit (ReLU) function was applied to introduce non-linearity, given below 

in Equation 2. 

𝑓(𝑥) = max(0, 𝑥)                                                                                                                                                                             (2) 

This helped the model learn complex patterns and avoid vanishing gradient issues. 

4) Pooling Layers: Max-pooling was used to downsample feature maps, reducing computational cost while preserving 

critical information given below in Equation 3. 

𝑃(𝑖, 𝑗) = max
𝑚,𝑛

(𝑍 (𝑖 + 𝑚, 𝑗 + 𝑛))                                                                                                                                                   (3) 

Where 𝑃(𝑖, 𝑗) Is the pooled value. A 2×2 filter with a stride of 2 was used. 

5) Dropout Layers: Dropout layers randomly deactivate neurons during training with a probability range of 0.25 - 0.50 to 

prevent overfitting. 

6) Flatten Layer: Transformed the extracted feature maps into a one-dimensional vector, making them suitable for the 

fully connected layers. 

7) Fully Connected Layers: Used dense layers to combine learned features and classify traffic signs. 

8) Output Layer: Used a softmax activation function to predict the probability distribution over multiple classes given 

below in Equation 4. 

𝑃(𝑦 = 𝑖|𝑥) =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑛
𝑗=1

                                                                                                                                                                    (4) 

where 𝑧𝑖  represents the previous layer's output for the class 𝑖. 

3.4  Model Compilation and Training 

The NaijaTrafficNet model was compiled and trained with the following configurations: 

1) Loss Function: SparseCategoricalCrossentropy was employed since labels were integers. 

2) Optimiser: The Adam optimiser was used to update the model weights and minimise the loss function given below in 

Equation 5. 

𝑊 = 𝑊 −  α 
∂L

∂W
                                                                                                                                                                             (5) 

where α Represents the learning rate and is the loss function. 

3) Batch Size: A mini-batch size of 32 was selected to optimise memory usage and convergence speed. 

4) Epochs: The model was trained over multiple epochs with early stopping to prevent overfitting, using validation loss 

as the stopping criterion. 

3.5  Evaluation Matrices 

This study used the attributes of confusion matrices (TP, TN, FP, FN) to get the accuracy, precision, recall, and F1-

score values as evaluation metrics. Accuracy can be described as how the model correctly detects regular or attack activity.  

This can be calculated using Equation 6. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
                                                                                                                                                   (6) 

The precision metrics, shown in Equation 7, measure how the model identifies attack or regular activity.   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
                                                                                                                                                                         (7) 

Equation 8 shows the recall, which can be described as the proportion of attack instances correctly classified over the total 

number of attack instances.  

𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑃

(𝑇𝑁 + 𝐹𝑃)
                                                                                                                                                                              (8) 

The F1-score is the harmonic mean of both precision and sensitivity and is calculated as shown in Equation 9.  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙                   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                                                             (9) 

3.6 Computational Environment 

The computational resources used in training the NaijaTrafficNet model are: 

1) Hardware: Intel Core i7-101750H, 8GB RAM 

2) Software: Python 3.9, TensorFlow 2.12, Keras, Jupyter Notebook (VSCode) 

3) Training Time: 45 minutes 

4. RESULTS AND DISCUSSION 

This model was implemented using Visual Studio Code (VSCode) with Jupyter Notebook, which provided a 

convenient environment for training our traffic sign classification model at runtime. The merged dataset contained 12,472 

images (producing 43 unique classes per type: regulatory (i.e., stop, speed limit, etc.), warning (i.e. pedestrian crossing, 

decline in lane), and informative (such as directional arrows)). 

4.1 Dataset Distribution 

The dataset was divided into training, validation, and testing subsets, with 9985 images (80%) allocated for training and 

2,487 images (20%) for validation. Thirty percent of the validation was reserved for testing, resulting in 795 images. 

Figure 1 displays a sample visualisation of the dataset, showing the distribution and examples of different traffic sign 

categories. Regulatory signs (for example, speed limits and stop) are well represented, whilst some informational signs 

have fewer samples. This imbalance helps to explain why the model performs slightly better on regulatory categories than 

on rarer informational classes 

 
Figure 1: Dataset distribution bar 

4.2 Performance Evaluation 

The custom NaijaTrafficNet CNN model was trained using the training dataset, and the testing dataset was used to 

measure the model's performance on unseen data. Classification: The model was effective, with 750/795 correctly 

classified images (94.3%) taken from the 795 test images. The model accurately classified 96.1% of regulatory signs 

(1132/1178) as actual instances; the rest were incorrect. Signs were recognisable with 93.7% Validation Accuracy 

(892/952), and informational ones reached 92.8% (748/806). 

The performance evaluation showed that the model made good predictions of high-priority signs (Most stop signs 98.2% 

and speed limits 97.6%). In contrast, the performance on data for less common informational signs was a bit worse. Most 

misclassifications result from mislabeling similar-looking signs of different orientations, e.g., 50 km/h and 60 km/h speed 

limit signs and various directional arrow variants. 

These results show that the model works in the real-world traffic sign recognition setting. Instead, they mark future 

work with improvements in interpreting similar signs for different categories. 

https://doi.org/10.53982/ajerd.2025.0803.19-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2025.0803.19-j                 Adjeh et al. 

Volume 8, Issue 3 

https://doi.org/10.53982/ajerd  217 

Table 1 shows the CNN model's performance results, including its accuracy, precision, recall, and F1-score results.  

Table 1: Model results 

S/N Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1- 

Score 

(%) 

1 NaijaTraffic 

Net 

94.72 95.31 94.72 94.48 

4.3 Confusion Matrix 

Figure 2 displays the confusion matrix for the performance of the NaijaTrafficNet model on the test set images. 

Visualising this plot explains how the model classifies all 43 traffic sign categories. The diagonal elements highlight 

correct and incorrect predictions, whereas off-diagonal entries reveal classification patterns with specific traffic sign types. 

The matrix shows that the model has honest-to-goodness diagonal dominance (accurate for most sign classes). Still, it 

also name-checks a few "confusion" cases common among the number's mtg of Highway signs (e.g. 50 km/h & 60km/h) 

and sure directional arrows that look similar in shape. These visual patterns aid in identifying how much extra data or 

design changes would also benefit performance. As a powerful diagnostic, the confusion matrix transcends aggregated 

accuracy metrics that can gloss over the actual capabilities and weaknesses of the classification system. 

 

 
Figure 2: Confusion matrix heatmap 

4.4 Comparative Analysis 

Comparing NaijaTrafficNet against common baselines reported on the GTSRB benchmark. Although state‑of‑the‑art 

models achieve higher accuracy on standardised datasets, our model remains competitive while being computationally 

efficient and tuned for unstructured, Nigerian‑like conditions. Table 2 presents a concise comparison. 

Table 2: Comparison with existing models 

Model Dataset Accuracy (%) Context Inference Speed 

GTSRB Baseline 

[27] 

GTSRB 98.0 Standardised Moderate 

MobileNetV2 [24] GTSRB 97.5 Standardised Fast 

EfficientNet‑B0 [13] GTSRB 98.2 Standardised Moderate 

NaijaTrafficNet  Merged 94.72 Unstructured 

(Nigerian‑like) 

Fast 
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4.5 Limitations 

1. Dataset limitation: There are no native Nigerian datasets, so the merged dataset serves as a proxy. 

2. Misclassification: similar‑looking signs (for example, 50 km/h vs 60 km/h and directional arrows) are sometimes 

confused by the model. 

3. No real‑time video testing: the model was evaluated on static images only. 

4. Computational time: inference speed was not formally measured here; it is estimated at about 18 ms per image on 

our hardware. 

5. CONCLUSION AND RECOMMENDATION 

Based on the findings and limitations identified in this study, the following recommendations are proposed to enhance 

the performance and real-world applicability of NaijaTrafficNet and similar systems: 

1. Develop a dedicated, large-scale Nigerian traffic sign dataset to better capture local sign variations and 

environmental conditions. 

2. Incorporate real-time video stream testing to evaluate model performance under dynamic, real-world conditions. 

3. Investigate the use of attention mechanisms or vision transformers to improve discrimination between visually 

similar sign classes. 

4. Optimise the model further for embedded deployment to ensure compatibility with low-power, in-vehicle systems. 

As reliable traffic sign recognition is becoming more necessary due to the increasing complexity of roads, accurate and 

efficient computer vision technologies are in growing demand. This study proposed a particular CNN model named 

NaijaTrafficNet that could accomplish sturdy traffic sign classification in real-world situations. Utilising a dataset blend 

and augmenting the model reached an accuracy of 94.72%, representing the 43 traffic sign categories with computational 

efficiency due to its simplified architecture. Performance tests confirmed a high performance for regulatory signs, although 

some difficulties are outstanding in differentiating nearly identical informational signs. These results highlight the 

necessity of better feature selectivity, especially for tabular (or little) signs. 

This work helps implement efficient traffic sign recognition in solutions like ADAS or innovative traffic light systems. 

Future research should look into sophisticated architectures and more data to improve classification robustness, especially 

for sign variations in different regions. The Work represents an important step towards safer and more intelligent 

transportation systems. 
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