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Abstract: This research examines the vital problem of detecting anomalies at an early stage within industrial systems by studying an 

electro-pneumatic double-acting cylinder actuator used in a bottling facility production line. The occurrence of malfunctions in valves 

leads to operational inefficiencies, and both planned and unplanned downtime, and additional maintenance expenses. The study 

contributes a new dual method that unites mathematical modelling and machine learning to overcome the limitations of conventional 

anomaly detection methods. The predictive model created for the actuator assessed its typical operation by evaluating pressure 

fluctuations, timing behaviour and displacement performance. Establishing baseline parameters through this process allowed the 

creation of synthetic datasets for normal operational standards. Real-time measurement points were validated through a baseline 

reference and machine learning models based on support vector machines received training data from labelled sets. The application of 

feature selection methods helped find essential variables to boost performance metrics in models. The research created valuable insights 

by reaching 90% success in operational state identification between normal and anomalous conditions across various test scenarios, 

which leads to an adaptable predictive maintenance system. The bottling company applied the case application, which led to 25% less 

machine downtime alongside better maintenance schedules, together with improved reliability during production. The research 

outcomes match the objectives of Agenda 2063 set by the African Union by supporting industrial development alongside innovation and 

sustainable economic expansion as well as meeting SDG targets such as Goal 9.4 and Goal 12.6 for sustainable industrial practices. 

This study provides essential information for industrial optimization policies through operational efficiency measures that demonstrate 

global significance for predictive maintenance systems. The scientific methods alongside their research results deliver important 

knowledge regarding industrial ecosystems in Africa and across the world by tackling regional and worldwide sustainable productivity 

issues. 

Keywords: Operational deviations, Machine, Early detection, Techniques, Learning  

 
1. INTRODUCTION 

The increasing demand for automation in industrial processes has driven the development of systems capable of 

identifying and addressing deviations in operational equipment at an early stage. Pneumatic actuators, specifically electro-

pneumatic double-acting cylinder actuators, play a critical role in various manufacturing systems, including bottling plants. 

These actuators are essential for tasks such as moving, positioning, and controlling processes with high accuracy and 

speed. However, if deviations or faults in these actuators are not detected in time, they can lead to inefficiencies, 

production downtime, or even complete system failure [1]. In bottling companies, where operational efficiency and 

accuracy are paramount, ensuring the proper functioning of actuators is a high priority. Deviations such as leakage, wear, 

misalignment, or pressure inconsistencies in the pneumatic system can significantly impact the performance of the 

production line.  

A predictive maintenance system examines electro-pneumatic actuator faults at early stages through the combination of 

decision trees and neural networks. The research analyzed single-acting actuators completely while its small dataset 

collection reduced the approach's general applicability [2]. The research applies combined models that include physics-

based operations together with machine-learning algorithms to represent actuator operation. High computational cost, no 

real-time implementation, and lack of varying operating conditions in simulations [3]. Supervised learning techniques were 

applied for diagnosing bottling plant pneumatic actuator faults which yielded Random Forest diagnosis with over 90% 

accuracy results. The system faces these drawbacks because it needs more data along with high computing expenses and 

extensive features to work properly [4]. 
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Premature actuator deviations in bottling lines can be predicted through an integration of IoT sensors with deep 

learning models but their deployment requires challenging resource constraints due to latency requirements [5]. The 

combination of pressure and flow rate and temperature data for anomaly detection analysis improved laboratory accuracy 

levels. A study demonstrated practical bottle system actuation through reinforcement learning yet it lacked evaluations 

against standard machine learning while its exploration of actuation types stopped at double-acting cylinders. [6, 7]. 

Vibration analysis solution to detect pneumatic actuator faults during early stages, fault-tolerant control systems, and 

stability was not confirmed for industrial-scale bottling plants [8, 9]. The researchers examined data-driven methods for 

pneumatic system anomaly detection however they encountered difficulties when working with unbalanced data and time-

consuming pre-processing steps [10]. The research by Müller presented a lifecycle prediction framework for actuators 

depending on predictive analytics which experienced obstacles for real-time execution [11]. 

The research by Patel focused on enhancing the energy efficiency of electro-pneumatic actuators used in bottling 

operations. The project placed maximum importance on energy efficiency yet failed to emphasize early deviation 

identification together with defect detection. The authors demonstrated an approach to monitor actuator defects by 

implementing a digital twin methodology. The real-time simulations of digital twins needed high computational power that 

required substantial infrastructure investments to link them with real systems [12, 13]. Researchers applied robust 

algorithms for selecting critical features to detect faults in industrial actuator systems through machine learning. The 

implementation depended largely on domain experts to generate features for the system [14]. First-principle models 

partnered with ML algorithms managed to detect faults within double-acting cylinders effectively. The method only 

functioned under stable operating conditions per the research. Research analyzed various AI algorithms for electro-

pneumatic actuator fault detection and GBMs yielded above 93% accuracy as the most effective solution. The research 

failed to address interpretability problems in black-box AI models and did not perform a cost-benefit analysis to determine 

advanced AI deployment feasibility in resource-limited bottling facilities. The research presented a dynamic threshold-

based fault detection algorithm which improved fault detection performance in high-speed production line electro-

pneumatic systems. The detection system only monitored pressure and temperature fluctuations but failed to address faults 

that stem from electrical or software malfunctions [15, 16, and 17]. The research discussed how supervised and 

unsupervised learning approaches perform when detecting deviations in industrial actuators. These supervised models 

needed labelled data to function although the acquisition of such data proves expensive within industrial domains while 

unsupervised models had limited precision for detecting minor discrepancies. The author applied convolutional neural 

networks until encountering issues with insufficient dataset size. The research examined pressure and flow monitoring for 

fault detection by studying only physical measurement data. The authors developed a semi-supervised learning actuator 

fault detection technique which required limited available labelled data. The method produced stable results although it 

failed to identify uncommon fault patterns [18, 19, 20, and 21].  

The real-time tracking and maintenance planning capabilities of Supervisory Control and Data Acquisition (SCADA) 

systems became more efficient after integrating predictive analytics features into them. The method depended on historical 

data collection without active anomaly detection and needed comprehensive adjustments to fit different SCADA systems 

in each plant [22]. The study developed an adaptive control approach which enhanced double-acting cylindrical actuator 

performance by maintaining operational stability after faults appeared. Through their design, delivered pneumatic system 

diagnostics models that could function despite sensor noise. The application of Bayesian networks allowed researchers to 

perform probabilistic fault prognostics on pneumatic actuators while providing accurate remaining useful life predictions 

under conditions of uncertainty. These methods need experts to supply conditional probability definitions along with 

network structure specifications [23, 24].  

The research team developed tiny machine learning algorithms for edge deployment to detect electro-pneumatic 

scheme issues and provide cost-efficient solutions yet these solutions have limited scalability toward complex industrial 

environments and might compromise accuracy through simplified models. [25]. the application of transfer learning for 

industrial pneumatic actuator fault detection in various industrial environments allows for minimal retraining necessities 

[26]. Researches devised a quick anomaly detection method to evaluate streaming plant data from high-speed bottling 

systems but this approach needed increased computational power and faced false positive problems due to plant data noise. 

[27]. the performance accuracy of hybrid AI methods with sensor fusion detections becomes higher by including 

environmental data however face complexities from system advancement alongside dependence on quality sensor data 

which could be unavailable [28]. The authors employed reinforcement learning to bottle system dynamic control and fault 

detection yet direct implementation caused adaptability and required extensive training periods and struggled with 

unanticipated actuator failures that differ from learned patterns [29]. The researchers employed wavelet transform and FFT 

analysis to detect double-acting cylinder faults in early stages but their detection was prone to noise interferences [30]. 

AI frameworks for anomalous activity detection in pneumatic systems showed promise for industrial environments 

through their modular structure but the study failed to validate them in real bottling plants leading to an unknown 

effectiveness level when used in dynamic industrial environments [31]. With fuzzy logic integrated within neural networks 

the system provides a fault diagnosis solution for electro-pneumatic actuators but only works effectively under industrial 

noise conditions and has performance evaluation only shown in controlled environments [32]. 

The researchers created advanced control systems which operate effectively with partial malfunctions while also 

developing diagnostic systems to find actuator drift causes but these systems only function under controlled laboratory 

https://doi.org/10.53982/ajerd.2025.0801.26-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2025.0801.26-j                 Amudipe et al. 

Volume 8, Issue 1 

https://doi.org/10.53982/ajerd  249 

conditions and require exact model parameter values [35]. Multiple failure factors within electro-pneumatic cylinders 

received examination to identify their main points of emergence. The authors applied distributed machine learning 

approaches to industrial pneumatic fault detection systems that enabled quick fault detection along with rapid training 

processes. A group of researchers created signal processing algorithms which improved fault detection accuracy through 

machine learning (ML) model implementation, although this process required great data pre-processing work and faced 

edge device integration difficulties [35, 36, 37, 38]. The implementation of IoT predictive maintenance systems for electro-

pneumatic bottling plants decreased plant downtime significantly yet required high initial deployment expenses, and IoT 

network stability negatively influenced system performance according to research by [39]. The automatic fault adaptation 

abilities of neural networks improve industrial safety together with speedier fail detection but this enhancement requires 

extensive computational capacity and real-time operation [40]. The detection of bottling plant faults can be achieved by 

applying ensemble learning methods to processed signals. The project implements reinforcement learning methods as an 

adaptive approach for scheduling maintenance of electro-pneumatic actuators. During model development, the 

reinforcement learning methods required high computational resources because they needed specific adjustments for 

different industrial uses. The combination of maintenance systems grew complicated because integrating hybrid models 

required updating rule-based systems for new actuator arrangements, and data processing costs were expensive while 

reinforcement learning needed difficult testing and confirmation procedures and hybrid models created additional 

maintenance complexity [41, 42]. 

Electro-pneumatic double-acting cylinder actuators need high-reliability levels for industrial automation purposes. The 

existing literature lacks an all-inclusive fault detection system which detects combination faults which include leakage 

faults, together with actuator motion irregularities as well as pneumatic supply disruptions, and valve system malfunctions. 

Most recent research focuses on diagnosing faults after their occurrence, without addressing predictive maintenance which 

enables the detection of potential issues before their appearance. 

The methods of conventional maintenance, which combine scheduled and reactive maintenance systems, produce 

delayed notification that creates additional maintenance expenditures alongside delayed detection of faults. The system 

inefficiencies cause prolonged equipment stoppages while increasing maintenance prices as well as generating potential 

workplace risks. A complete fault detection system must be implemented to actively monitor electro-pneumatic actuators 

because it detects pre-processing faults, which brings enhanced operational efficiency. 

The research applies mathematical models together with the SVM algorithm to monitor electro-pneumatic actuators 

through its analysis of double-acting cylinder anomalies. The predictive system helps spot defects early while preventing 

system malfunctions and cutting down maintenance expenses, and it provides expanded safety along with expanded 

adaptability to similar industrial systems. 

2. METHODOLOGY 

The methodology for identifying deviations in an electro-pneumatic double-acting cylinder actuator involves a 

systematic approach as shown in Figure 1. The workflow follows steps such as analysis of the system and data acquisition, 

and builds mathematical models and performs feature engineering before developing machine learning models for real-

time monitoring. The model receives its training through fluid dynamics principles and mechanical mechanics principles 

before undergoing simulation under different scenarios. Statistical methods are used for conducting both feature selection 

and extraction. The researchers test the machine learning model through cross-validation techniques after its development. 

The system uses real-time monitoring and model insights for performing deviation detection and diagnosis tasks. The 

system operates through an interface with the bottling plant's supervisory control system while automatically updating its 

model continuously. The research method validates its findings in a particular bottling plant before delivering practical 

results to sustain system dependability. 

2.1 Case Study Context 

 The bottling company in this case study provided a practical environment for evaluating the proposed approach. 

Bottling operations rely heavily on precision timing and synchronisation, making them particularly vulnerable to 

disruptions caused by actuator faults. By collecting real-time data from the actuators and applying machine learning 

algorithms, the study demonstrates the potential to detect deviations early and optimise maintenance schedules. 

2.2 Mathematical Modelling and Machine Learning 
 Mathematical modelling establishes the fundamental understanding of physical dynamics which characterizes electro-

pneumatic actuator operational behaviour. The simulated operation under ideal conditions enables the detection of 

deviations from expected operational outputs. The model includes pressure parameter and displacement parameter and 

flow rate parameter to develop standard operational characteristics. The use of machine learning depends on historical data 

to perform operational state classification between normal and faulty conditions while also predicting performance 

deviations. Sensor data processing adopts three methods which include classification technicalities and anomaly detection 

while using regression models to monitor failure indications. Through method integration the system becomes capable of 

detecting elusive operational changes which standard oversight methods cannot detect. Engineers must create dynamic 

equations for double-acting pneumatic cylinders through modelling of pneumatic supply dynamics and cylinder dynamics 

and piston-load interaction behavior. The following mathematical derivation will be accomplished in a systematic manner. 

Assumptions: 
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• Linear Behavior of the Pneumatic System 

• Supply Pressure 

• Actuator Dynamics 

• No Air Leakage or Valve Malfunctions 

• Training Data Availability 

• Feature Selection 

• SVM Performance 

Variables: 

𝑃1, 𝑃2: Pressures in the chambers (Pa). 𝑉1, 𝑉2:  Volumes of the chambers (m³). 𝐴1, 𝐴2: Effective piston areas (m²). X: piston 

Displacement (m). M: piston and load Mass (kg). K: Spring (N/m). 𝑏: Damping (N·s/m). 𝐹load: External load force (N). 𝑅: 

gas (8.314 J/ (mol·K)). 𝑇: Temperature (K). 𝛾: Specific heat ratio of the gas (dimensionless). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Methodology flowchart 

 

2.2.1 Dynamic equations 

Develop the dynamic equations that describe the behaviour of the double-acting cylinder. This involves modelling the 

pneumatic supply, cylinder dynamics, and the interaction between the piston and load. 

1. Pneumatic supply dynamics 

Equation 1 represents the volume dynamics of the two chambers of a double-acting pneumatic cylinder. The volume of 

each chamber depends on its initial volume and the displacement of the piston. 

For each chamber, the volume can be expressed as:  

𝑉1=𝑉1, 0 + 𝐴1 x                             (1) 

𝑉2 = 𝑉2, 0 – 𝐴2 x 

Equation: V1 =V1, 0 + A1⋅x 

Where V1, This represents the air volume in the first chamber (chamber 1) of the pneumatic system at a certain 

displacement, V1, 0: The initial air volume in chamber 1 when the piston is at its starting position (typically when x=0), A1: 

The cross-sectional area of the piston in chamber 1, It indicates how much volume is added to the chamber per unit of 

piston displacement, X: The displacement of the piston. A positive displacement indicates that the piston is moving in a 
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direction that increases the volume in chamber 1. In this equation, as the piston moves by a displacement x, the volume in 

chamber 1 increases by A1⋅ x meaning the air in chamber 1 expands. 

Equation: V2 = V2, 0 − A2⋅x 

V2: The air volume in the second chamber (chamber 2) of the pneumatic system at a given displacement, V2, 0: The initial 

air volume in chamber 2 when the piston is at its starting position, A2: The cross-sectional area of the piston in chamber 2, 

X: The displacement of the piston. Here, as the piston moves by x, the volume in chamber 2 decreases by A2⋅x indicating 

that the air in chamber 2 is being compressed as the piston moves. 

The outlet equation can be used to model the total volume of air entering or exiting the spaces between them. But for the 

sake of simplicity, let's assume Equation (2) represents the ideal gas law applied to two different states of a gas within a 

system. The equation is expressed as: 

 

𝑃1𝑉1 = 𝑛1𝑅𝑇  

𝑃2𝑉2 = 𝑛2𝑅𝑇                             (2) 

Equation: P1V1=n1RT 

P1is the first chamber Pressure, and V1 is the first chamber Volume. n1: first chamber Number of moles, R: universal gas 

and T is the gas temperature (assumed to be constant if not explicitly stated). According to this equation, the number of 

moles of gas (n1), the gas constant (R), and the temperature (T) are equal to the pressure (P1) times the volume (V1) for the 

gas in the first system or chamber. 

Equation: P2V2= n2RT 

P2: The subsequent chamber or system's pressure, R is the universal gas constant, V2 is the second chamber's volume, and 

n2 is the number of moles of gas there. T: The gas's temperature. Likewise, this formula represents the second chamber's 

ideal gas law. It asserts that the number of moles, gas constant, and temperature are all multiplied by the pressure and 

volume in this chamber. The behaviour of the air in chamber 1 as the piston moves would be described by P1V1 = n1RT. 

The behaviour of the gas in chamber 2 could be described as P2V2=n2RT. Pressures P1 and P2 adjust to preserve the 

relationship specified by the ideal while the piston travels and modifies volumes V1 and V2. This equation describes how 

the pressure, volume, and temperature of an ideal gas are related in two different states.  
Equation (3) characterizes a fundamental thermodynamic relationship governing the behaviour of a gas within a control 

volume. It describes the pressure-volume dynamics of a gas under varying conditions. 

 

𝑃1̇ 𝑉1 + 𝑃1𝑉1= 𝑛1̇𝑅𝑇    

𝑃2̇ 𝑉2 + 𝑃2𝑉2= 𝑛2̇𝑅𝑇                                     (3) 

 

The pressures in chambers 1 and 2 are represented by (P1) ̇ and (P2) ̇, respectively. The air volumes in chambers 1 and 2 are 

denoted by V1 and V2. P1˙,P2: Time derivatives of chambers 1 and 2 pressure, which indicate how quickly pressure changes 

over time derivatives of the quantity of gas in chambers 1 and 2, or the rate at which the air content in the chambers 

changes, are shown in n1˙,n2. R: The constant for universal gases. T: The system's absolute temperature, which is taken to 

be constant. They explain how the pressure, volume, and quantity of moles of gas—in this case, air—in two distinct 

chambers of a pneumatic system relate to one another. The equations integrate the dynamics of a pneumatic system with 

the ideal gas law. Where piston displacement causes the volumes V1 and V2 to change over time. 

Left Side: 

P1V1: This term represents how pressure in chamber 1 is changing over time. It shows the influence of the rate of change of 

pressure on the overall system. P1V1: This term represents the current state of the gas in chamber 1.  

Right Side: 

n1RT: This term represents the rate of change of the amount of gas (in moles) in chamber 1, multiplied by gas and the 

temperature. Since R and T are constants, this shows how changes in the moles affect the pressure and volume relationship 

in the system. This equation has the same structure as the first one but applies to chamber 2. The terms are similar, and the 

equation describes how the pressure and volume in chamber 2 evolve based on the degree of alteration of gas molecules for 

the chamber. In a pneumatic system, as the piston moves, the volumes V1 and V2 in chambers 1 and 2 change. This causes 

pressure P1 and P2 to change over time. If air enters or leaves the chambers the pressures will adjust according to the ideal 

gas law. These equations describe the dynamic behaviour of the gas in each chamber, taking into account both changes in 

pressure and changes in the amount of gas.  Equation (4) signifies the dynamic behaviour of the pressures P1 and P2 in two 

control volumes of an electro-pneumatic system, specifically in a double-acting cylinder actuator. It describes the 

relationship between pressure changes, volume variations, and mass flow rates within the system. 

Since �̇�= 
�̇�

𝑀
  (where 𝑀 is the molar mass), and 𝑉1̇ =  𝐴1�̇�, 𝑉2̇ = −𝐴2𝑥  ̇ :  
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�̇�1𝑉1,0, + 𝐴1𝑥) + 𝑃1𝐴1𝑥  ̇ = 
𝑚1̇ 𝑅𝑇

𝑀
     

�̇�2𝑉2,0, + 𝐴2𝑥) + 𝑃2𝐴2𝑥  ̇ = 
𝑚2̇ 𝑅𝑇

𝑀
                                  (4) 

Where: �̇�1: change level of pressure in space 1. �̇�2: change degree of pressure in space 2. R: constant gas, M: Gas Molar 

mass, and T is the temperature (assumed constant). V1,0: Initial volume of space 1 when the piston is at the starting position, 

V2,0: Initial volume of space 2, A1: Cross-sectional area of the piston affecting space 1, A2: Cross-sectional area of the 

piston affecting space 2, x: Piston displacement, 𝑚1̇ : Mass flow rate of gas entering or exiting chamber 1. 𝑚2̇ : Mass flow 

rate of gas entering or exiting space 2; �̇�, Rate of piston displacement (piston velocity). P1: Pressure in space 1, and P2: 

Pressure in space 2. The right-hand side of the equation represents the rate of mass flow into or out of chamber 2, scaled by 

temperature and the molar mass of the gas. Essentially, it escribes the dynamic behaviour of the gas (air) inside space 2. 

These equations are fundamental in modelling and controlling pneumatic actuators in industrial automation. They help in 

designing predictive maintenance algorithms by identifying anomalies in pressure variations. 

2. Cylinder dynamics 

Equation (5) denotes the dynamics of a double-acting pneumatic cylinder, describing the motion of the piston and its 

load based on Newton’s Second Law of Motion.  

𝑚�̈� +𝑏�̇�+𝑘𝑥 = 𝑃1𝐴1 − 𝑃2𝐴2 – 𝐹load                          (5) 

m is the mass of the moving element (piston), �̈� : The acceleration of the moving element (second derivative of 

displacement concerning time). b: The damping coefficient, representing resistive forces (like friction or air resistance) 

acting on the moving object, �̇�: The velocity of the moving element (first derivative of displacement concerning time). k: 

The stiffness (spring constant) representing the elastic force that resists displacement, x: The displacement of the mass 

(position of the piston or moving part relative to some reference), P1: The pressure in space 1 (e.g., a pressure that pushes 

on one side of the piston). A1: cross-sectional area of the piston on the side exposed to P1, translating the pressure into a 

force, P2: pressure in chamber 2 (opposing pressure on the other side of the piston), A2: cross-sectional area of the piston of 

the side exposed to P2 translating the pressure into a force, and Fload: An external force acting on the system (e.g., a load or 

resistance that the system needs to overcome). This equation governs how the piston moves in response to applied 

pneumatic forces, damping effects, and external loads. 

2.2.2. Fluid dynamic equations: 

  Incorporate fluid dynamics principles to model the airflow into and out of the cylinder chambers. This includes 

modelling the pressure dynamics within the chambers 

1. Pressure dynamics 

A double-acting pneumatic cylinder's pressure dynamics are described by equation (6), which shows how the pressure 

in each chamber varies over time. The equations take into account the actuator motion, chamber volumes, and the mass 

flow rate of air entering or leaving the chambers. 

 

�̇�1= 
𝑅𝑀𝑇

𝑀(𝑉1,0,+ 𝐴1x) 
  (𝑚1̇  − 

𝑃1𝐴1𝑥  ̇

𝑅𝑇
)  

�̇�2= 
𝑅𝑀𝑇

𝑀(𝑉2,0,+ 𝐴2x) 
  (𝑚2̇  −

𝑃2𝐴2𝑥  ̇

𝑅𝑇
)                                (6) 

 

Where �̇�1: is the degree of change of pressure in chamber 1, �̇�2: is the level of change of pressure in chamber 2, R is the 

universal gas constant (or specific gas constant if M refers to molecular weight), M is the molar mass of the gas (or it could 

refer to the number of moles). T: Temperature (assumed constant), V1, 0: Initial volume of chamber 1 when the piston is at 

the starting position, V2,0: Initial volume of chamber 2, A1 is a Cross-sectional area of the piston affecting chamber 1. A2 is 

the cross-sectional area of the piston affecting chamber 2, x: Piston displacement, 𝑚1̇ : Mass flow rate of gas entering or 

exiting chamber 1, 𝑚2̇ : Mass flow rate of gas entering or exiting chamber 2, �̇�: Rate of piston displacement (piston 

velocity), P1: Pressure in chamber 1, and P2 is the pressure in chamber 2. As the piston moves, it affects the volume of the 

two chambers (chamber 1 and chamber 2). The volume of the gas into or out of the chambers affects how much gas is 

present, which influences the pressure. The equations consider the effect of piston motion on the pressure: as the piston 

compresses the gas (reducing volume), pressure increases; as the gas expands (increasing volume), pressure decreases. The 

system assumes that temperature T remains constant, and the gas behaviour follows the ideal gas law. 

These equations are essential for modelling the pressure response in a pneumatic actuator, which is crucial for designing 

control strategies, fault detection, and optimizing system efficiency. 

2.2.3 Governing equations 

Equation (7) represents the continuity equation that ensures mass conservation within the system. For a compressible 

fluid, it can be written as:  
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𝜕𝜌

𝜕𝑡
 + ∇ × (𝜌𝑣) = 0                                (7) 

 

Where p is the fluid density and v is the velocity vector. 

 

1. Navier-Stokes equations: These formulas account for the effects of viscosity and describe the motion of fluid 

materials. The following are the Navier-Stokes equations for a compressible fluid equation (8):  

𝜌 (
∂v

∂t
 + (𝑣 × ∇) 𝑣) = −∇𝑝 + 𝜇∇2𝑣 + 𝜌𝑔                        (8) 

 Where 𝑝 is the pressure, 𝜇 is the dynamic viscosity, and 𝑔 is the gravitational acceleration. 

2. Ideal Gas Law: To relate pressure, volume, and temperature in the chambers, we use the ideal gas law:  

𝑝𝑉=𝑛𝑅𝑇  

in which 𝑝 stands for pressure, 𝑉 for volume, 𝑛 for the number of gas molecules, 𝑅 for the universal gas constant, and 𝑇 for 

temperature. 

2.2.4 Modelling the cylinder chambers 

Equation (9) represents the volume V(t) of a chamber in a double-acting cylinder as a function of the piston position 

x(t). It is given by: 

𝑉  (𝑡 ) =𝐴 𝑥  (𝑡 )                             (9)  

Where x(t) is the piston's position as a function of time, V(t) is the volume of fluid or air that the piston has displaced 

during movement, and A is the cylinder's cross-sectional area.  

When the piston moves a certain distance x (t), the volume of fluid displaced or compressed in the cylinder equals the area 

A multiplied by the displacement. This equation assumes that the chamber volume is directly proportional to the piston 

displacement. Other factors like dead volume (initial chamber volume when the piston is at rest) are not considered.  

1. Pressure Dynamics: Using the model gas law as shown in equation 10,  the pressure in the chamber 

container is related to the volume and the mass of air:  

 

 𝑝 (𝑡) = 
𝑚(𝑡)𝑅𝑇

𝑉(𝑡) 
                                     (10) 

Where:  

p(t): Pressure at time t, m(t): Mass of the gas at time t, R: Specific gas constant, T is the gas's temperature, and V(t) is its 

volume at the time (t).  

At any given time, the mass of the gas (m (t)) and its temperature (T) are directly proportional to p(t). Inversely 

proportional to the volume V (t) is p (t), meaning that if the volume decreases, the pressure increases (assuming mass 

and temperature are constant). As V (t) increases, the pressure p (t) decreases if m (t) and T are held constant, and vice 

versa. 

 

2. Flow through Valves: Valves control the airflow into and out of the chambers as shown in equation (11). The mass 

flow rate �̇� through a valve can be modelled using the orifice equation: 

 �̇� = 𝐶𝑑𝐴𝑣 √2𝜌(𝑝𝑠 − 𝑝𝑑)                                (11) 

Where: �̇�: This represents the mass flow rate of the fluid. Av, represents the cross-sectional area of the opening (orifice 

or valve) through which the fluid is flowing. ρ: This is the density of the fluid, typically measured in kilograms per cubic 

meter (kg/m³). ps: This represents the supply pressure or upstream pressure, which is the pressure of the fluid before it 

passes through the orifice or valve. pd: This denotes the downstream pressure or exit pressure, which is the pressure of 

the fluid after it has passed through the orifice or valve. The difference between the supply pressure (ps) and the 

downstream pressure (pdp). The equation shows that the mass flow rate (m) is directly proportional to the discharge 

coefficient (C), the cross-sectional area of the opening (Av), and the square root of the pressure differential (ps−p) scaled 

by the density of the fluid (ρ). The term √2𝜌(𝑝𝑠 − 𝑝𝑑)    represents the flow velocity derived from Bernoulli's principle, 

which states that the pressure energy converted into kinetic energy results in a flow velocity through an orifice. This 

equation is derived from the Bernoulli principle and is used to calculate the airflow through an orifice or valve into a 

cylinder chamber. It assumes that air behaves as an incompressible fluid under certain flow conditions. The square root 

term represents the velocity of the airflow, determined by the pressure difference between the supply (ps) and 

downstream (pd) pressures. The mass flow rate is proportional to the discharge coefficient, valve opening area, and the 

pressure differential. 
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2.2.5 System of equations 

Equation (12) describes the pressure dynamics in the left and right chambers of a double-acting pneumatic actuator. It 

is derived based on the principles of thermodynamics and mass flow balance, incorporating the ideal gas law and 

continuity equation. Combining these principles, we can set up a system of equations describing each chamber's pressure 

dynamics. 

For the left chamber: 

 

 
𝑑𝑝𝐿

𝑑𝑡
 = 

𝑅𝑇

𝑉𝐿(𝑡)
 ( �̇�𝑖𝑛 −�̇�𝑜𝑢𝑡) − 

𝑅𝑇𝑝𝐿

𝑉𝐿(𝑡)2 
 . 

 𝑑𝑉𝐿 

𝑑𝑡
    

For the right chamber:  
 𝑑𝑝𝑅  

𝑑𝑡
   = 

 𝑅𝑇  

𝑉𝑅(𝑡)
   (�̇�𝑖𝑛 − �̇�𝑜𝑢𝑡) – 

 𝑅𝑇𝑝𝑅  

𝑉𝑅(𝑡)2 
  . 

 𝑑𝑉𝑅   

𝑑𝑡
                           (12) 

 

Where: 

pL: Represents the pressure of the gas in the system (e.g., pressure of the gas in a chamber). The subscript L may indicate a 

specific location or a type of gas. 

t: Represents time. The equation is a differential equation, indicating how pressure changes over time. 

R: The universal gas constant, which is a constant value used in the ideal gas law and thermodynamics. Its value is 

approximately 8.314 J/(mol\cdotpK). 

T: Represents the temperature of the gas in Kelvin. This should be held constant for this equation to be simplified to some 

extent, or it may vary depending on the system. 

VL(t): Represents the volume of the gas chamber or container as a function of time. The volume may change dynamically 

based on the system configuration (e.g., a variable volume chamber). 

�̇�𝑖𝑛, The mass movement speed of the gas entering the system (mass per unit time). This term indicates how much mass is 

being added to the system over time. 

�̇�𝑜𝑢𝑡, The mass movement speed of the gas leaving the system. This term indicates how much mass is being removed from 

the system over time. 

dpL/dt: The degree of alteration of pressure in the system over time. It indicates how the pressure changes as the gas enters 

or exits the system. 

dVL/dt: The rate of change of volume over time. This indicates how quickly the volume of the chamber is changing, which 

affects the pressure.  

This system of equations captures how pressure changes dynamically in both chambers based on the amount of air mass 

entering and exiting. The changing chamber volume is due to piston movement and the thermodynamic properties of the 

working gas. 

2.2.6 Mathematical formulation of SVM classification 

Equation (13) signifies the mathematical formulation of a Support Vector Machine (SVM) classification problem in its 

primal form with soft margin constraints.  

SVM classifies the data by solving the following problem:’ 

Min 

      w, b,ξi1/2∥w∥2   

   

Subject to the constraints: 

 

Yi (w
T 

xi + b) ≥ 1−ξi, ξi ≥ 0, for all I = 1, 2… N                                                                                      (13) 

Where:  

w is the weight vector that defines the hyperplane, 

b is the bias term, 

yi  is the label (either +1 for normal or -1 for anomalous) for each training sample xi, 

ξi are slack variables that allow for some misclassification. 

For non-linear classification, the kernel trick is applied to map the data to a higher-dimensional space: 

K (xi, xj) = (xi) ⋅ Φ (xj)    

Where K is the kernel function) and Φ (xi) is a mapping to a higher-dimensional space. 

 

This formulation allows SVM to handle non-linearly separable cases by introducing a penalty for misclassified points 

through the slack variables ξi.  

2.2.7 Force balance:  

Pneumatic forces, friction forces, and external loads are among the forces that are modelled acting on the piston. 

Pneumatic forces, friction forces, and external loads are only a few of the factors that must be taken into account when 

modelling the forces operating on the piston in an electro-pneumatic double-acting cylinder.  
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1. Pneumatic forces: Equation (14) defines the pneumatic force (Fpneumatic) acting on a double-acting cylinder actuator. It 

is derived from the pressure difference acting on the piston surfaces. The pressure of the air acting on the piston 

surfaces generates the pneumatic forces. For a double-acting cylinder: 

P1 is the pressure in the front chamber (pushing the piston rod out). 

P2 is the pressure in the rear chamber (pulling the piston rod in). 

A1 is the effective area of the piston on the front side. 

A2 is the effective piston area on the rear side (typically smaller due to the rod area). 

The pneumatic force can be expressed as:  

𝐹pneumatic = (𝑃1×𝐴1) − (𝑃2×𝐴2)                         (14) 

 

Where, Fpneumatic: This is the net force generated by the pneumatic system. It represents the effective force that can be 

utilized to perform work, such as moving an actuator, lifting a load, or applying pressure to a mechanism. P1: Often 

called the supply chamber, this is the pressure in the pneumatic actuator's first chamber. Units of force per unit area, 

like Pascals (Pa) or pounds per square inch (psi), are commonly used to measure it. A1: The piston's cross-sectional 

area in the first chamber is shown here. It is the area where the pressure P1 is applied effectively. Typically, square 

inches (in
2
) or square meters (m

2
) are used as the unit. P2: Often called the return chamber, this is the pressure in the 

pneumatic actuator's second chamber. Force per unit area is used to measure it, just like P1. A2: The piston's cross-

sectional area in the second chamber is seen here. Similar to A1. It indicates the area over which the pressure P2acts in 

the opposite direction. 

2. Friction Forces: Friction forces can be categorized into static friction (when the piston is at rest) and dynamic friction 

(when the piston is moving). The friction force 𝐹friction depends on the nature of the piston movement and the 

properties of the cylinder's materials. A mixture of static, viscous, and Coulomb friction can frequently be used to 

simulate the friction force as shown in equation (15): 

  𝑓= 𝐹𝑠 + 𝐹𝑐 + 𝑏𝑓𝑥˙                                          (15) 

Where 𝐹𝑠 represents the coefficient of static friction, 𝐹𝑐 the coefficient of Coulomb friction, and 𝑏𝑓 the coefficient of 

viscous friction. The following is a typical dynamic friction force model:  

𝐹friction = 𝜇 × 𝑁     

The pneumatic force acting on the piston is represented by the normal force, 𝑁, and the coefficient of friction, 𝜇. 

3. External Loads: External loads 𝐹external can include any force that acts on the piston from outside the cylinder, such as 

forces due to the load being moved by the piston or any additional resistances. 

4. Force Balance Equation: Taking into account Newton's second law equation (16), the sum of these forces can be used 

to define the piston's total force equilibrium equation:  

𝐹=𝑚𝑎                              (16) 

Where 𝑚 is the mass of the piston and 𝑎 its acceleration 

𝑚⋅𝑎 = (𝑃1⋅𝐴1) − (𝑃2⋅𝐴2) – 𝐹friction−𝐹external    

Rewriting the equation in terms of acceleration:  

𝑎 = (𝑃1⋅𝐴1) − (𝑃2⋅𝐴2) − 𝐹friction−𝐹external  

Incorporating Friction Models 

The friction force can be more accurately modelled as shown in equation (17), using a combination of static, Coulomb 

(sliding), and viscous friction: 

𝐹friction = 𝐹static + 𝐹Coulomb + 𝐹viscous                            (17) 

 

Where the friction force that remains static (present when a piston starts moving) is denoted by 𝐹static. The Coulomb 

friction force, or 𝐹Coulomb, is constant when the piston is moving steadily.  

𝐹viscous = 𝜇𝑣 ⋅ 𝑣   the viscous friction force, proportional to the piston velocity 𝑣, with 𝜇𝑣 being the viscous friction 

coefficient. By incorporating all these forces into the model, we will get a comprehensive understanding of the 

dynamics of the piston in an electro-pneumatic double-acting cylinder: 

𝑚⋅𝑎 = (𝑃1⋅𝐴1) − (𝑃2⋅𝐴2) − (𝐹static + 𝐹Coulomb + 𝜇𝑣 ⋅ 𝑣) − 𝐹external  

This force balance equation can be used to analyse the motion and performance of the piston under various operating 

conditions, helping in the development of intelligent algorithms and condition monitoring techniques for early anomaly 
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detection. Identify and estimate the model's key parameters such as friction coefficients, pneumatic capacitance, and 

resistance.  Identifying and estimating key parameters such as friction coefficients, pneumatic capacitance, and 

resistance for an electro-pneumatic double-acting cylinder actuator involves a combination of experimental data 

collection, mathematical modelling, and system identification techniques.  

2.7 Data Acquisition  

Data Acquisition Flowchart for fault detection in electro-pneumatic actuators Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Data acquisition flowchart 

Each cylinder in a filling station pours the right amount of product into the bottles thanks to careful control of several 

characteristics. Table 1, offers a dataset that shows the normal performance of such a filling station by recording key 

characteristics throughout cycles. The dataset describes the behaviour and performance of the cylinder during a single 

operational cycle under typical operating conditions and comprises measurements made at intervals of 0.1 seconds. 

 

2.8 Algorithm Development for Electro-Pneumatic Double-Acting Cylinder using support vector machine. 

 An algorithm development block diagram shown in Figure 3, for detecting anomalies in an Electro-Pneumatic Double-

Acting Cylinder using a Support Vector Machine (SVM). Assume we are building an incipient fault detection model based 

on the data from the cylinder parameters (e.g., pressure, velocity, position, etc.).  

 

 

 

 

 

   

 

 

 

Figure 3: Algorithm development block diagram 

 

 

The techniques shown in figure 1 are performed sequentially, Data Pre-processing, Collecting and pre-process the 

sensor data. Label the data for the SVM as either "normal" (0) or "Anomaly" (1) and, Divided the data into training and 

testing sets. Table 3, Feature Extraction, Extract key features such as pressure, position, velocity, force, air flow rate, 
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temperature, etc. Normalize/standardize the features for SVM input. Train the SVM Model: Use the training data to train 

the SVM model. Tune hyperparameters like the kernel (linear, radial basis function (RBF), etc.). Anomaly Detection is for 

real-time monitoring, using the trained SVM model to classify incoming data points as normal or abnormal. Implement 

performance metrics such as accuracy, precision, recall, F1 score, etc. Model Validation and Testing: Evaluate the SVM 

model on a test dataset. Validate the model performance and fine-tune parameters if needed. 

Machine Learning Model Training Block Diagram was employed as shown in Figure 4. An SVM classifier was chosen 

for its robustness in handling high-dimensional spaces and its ability to create clear decision boundaries. Table 2, shows 

the comparison with other models. The polynomial kernel was selected as it allows modelling more complex decision 

boundaries compared to linear kernels. SVM's strengths lie in its margin maximization and versatility with kernels, making 

it unique compared to other machine learning algorithms. 

 

 

 

 

Figure 4: Machine learning model training block diagram 

 

Table 1: Dataset acquisition summary 

 Time 

(s) 

Key Data Points ((Pressure(P), Cylinder Position(X), Velocity(V), Force(F), 

Air Flow Rate(Q), Temp(T), Cycle Time(CT)) 

Conditions Date/Time 

 
10 

   P (1→5→0), X (0→100→20), V (0→20), F (0→125→0), Q (10→30→5), T (20), 

 CT (5) 
Normal 

Day 1, 9 

a.m. 

 
        
    20      P (5.1→5.5→0), X (0→100→20), V (0→20), F (0→125→0), Q                 

  (10→30→5), T (20), CT (5) 
Normal 

Day 1, 12 

p.m. 

   
 

    30  P (1→5→0), X (0→100→20), V (0→20), F (0→125→0), Q         

   (10→30→5), T (20), CT (5) 
Normal 

Day 1, 3 

p.m. 

 
  

40  P (1→5→0), X (0→100→20), V (0→20), F (0→125→0), Q         

  (10→30→5), T (20), CT (5) 
Normal 

Day 2, 9 

a.m. 

 
  

50   P (1→5→0), X (0→100→20), V (0→20), F (0→125→0), Q         

 (10→30→5), T (20), CT (5) 
Normal 

Day 2, 12 

p.m. 

 
  
 60  P (1→5→0), X (0→100→20), V (0→20), F (0→125→0), Q         

   (10→30→5), T (20), CT (5) 
Normal 

Day 2, 3 

p.m. 

 
  

70  P (1→5→0), X (0→100→20), V (0→20), F (0→125→0), Q         

  (10→30→5), T (20), CT (5) 
Normal 

Day 3, 9 

a.m. 

 

 
  

  80 P (1→5→0), X (0→100→20), V (0→20), F (0→125→0), Q         

 (10→30→5), T (20), CT (5) 
Normal 

Day 3, 12 

p.m. 

  

     90  P (1→5→0), X (0→100→20), V (0→20), F (0→125→0), Q         

   (10→30→5), T (20), CT (5) 
Normal 

Day 3, 3 

p.m. 

  

 100 P (1→5→0), X (0→100→20), V (0→20), F (0→125→0), Q         

   (10→30→5), T (20), CT (5) 
Normal 

Day 4, 6 

a.m. 

  

 110 P (1→5→0), X (0→100→20), V (0→20), F (0→125→0), Q         

  (10→30→5), T (20), CT (5) 
Normal 

Day 4, 12 

p.m. 

  

 120 P (1→5→0), X (0→100→20), V (0→20), F (0→125→0), Q         

   (10→30→5), T (20), CT (5) 
Normal 

Day 4, 3 

p.m. 

 

Table 2: Comparison with other models 

 

 

 

 

 

 

 

Aspect SVM Other ML Models 

Key Goal Maximize margin Minimize loss function (e.g., MSE) 

Focus Boundary points (support vectors) Entire dataset (e.g., k-NN, trees) 

Scalability Less scalable for large data Better scalability (e.g., RF, NN) 

Kernel Trick Handles non-linearity flexibly Not applicable to most models 

Best Use Case High-dimensional, small data Varies (e.g., RF for tabular data) 
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Table 3: Extracted features and their descriptions for normal condition 

Feature Description Peak Mean Variance Min Value Max Value 

Pressure (P) Measure of pressure inside the system in the bar 5 2.5 2.25 0 5 

Cylinder Position (X) Position of the cylinder in mm 100 56 866.67 0 100 

Velocity (V) Velocity of the cylinder in mm/s 20 20 0 20 20 

Force (F) The force applied by the cylinder in Newton 125 60 2083.33 0 125 

Air Flow Rate (Q) Airflow rate into the cylinder in L/min 30 20 41.67 5 30 

Temperature (T) Temperature in °C 20 20 0 20 20 

Cycle Time (CT) Time taken per cycle in seconds 5 5 0 5 5 

 

This feature extraction process will help to identify any abnormal patterns or deviations in the cylinder's operation by 

comparing real-time data with the baseline statistical and frequency domain characteristics using Python software  

The integration of mathematical modelling provides theoretical expectations (baseline behaviour) and creates a data-

driven fault detection system. The model outputs provided a controlled, labelled dataset for training, while Machine 

learning detects real-world deviations (pattern recognition), the SVM classifier enabled real-time anomaly detection. The 

use of the polynomial kernel allowed the SVM to model non-linear relationships effectively, improving anomaly detection. 

Scaling the features ensured that all parameters contributed equally to the decision boundary. Despite the challenges posed 

by class imbalance, the Synthetic Minority Oversampling Technique (SMOTE). Successfully enhanced the model's ability 

to identify anomalies. The high accuracy of the SVM model suggests its feasibility for deployment in industrial fault 

detection systems. Early detection of anomalies enables predictive maintenance, minimizing downtime and averting 

potential machine failures. This aligns with Industry 4.0 principles of efficiency and reliability. 

3. RESULTS AND DISCUSSIONS 

The Experimental Analysis of Anomaly Detection using the SVM Model trained on the Normal Datasets Tables. 

Results for the operating variables were analysed. We trained the SVM on the normalized datasets from the tables of 

Normal Datasets. We used it to detect anomalies in the actuation behaviour of the electro-pneumatic double-acting cylinder. 

3.1 Model Performance 

Table 4, provides a detailed performance evaluation of a tuned Support Vector Machine (SVM) model tested on a 

balanced dataset. 

 

Table 4: The SVM model (tuned) was trained and evaluated on the balanced dataset results summary. 

 Precision Recall  f1-score Support 

0 (Normal) 0.94 0.86 0.90 127 

1 (Anomaly) 0.87 0.94 0.91 127 

Accuracy   0.90 254 

Macro avg 0.90 0.90 0.90 254 

Weighted avg 0.90 0.90 0.90 254 

Precision: Precision measures the proportion of correct positive predictions out of all positive predictions.  

Precision = True Positives / (True Positives + False Positives) 

 

For Class 0 (Normal): Precision is 0.94, indicating that 94% of the instances predicted as Normal were correct. For Class 1 

(Anomaly): Precision is 0.87, meaning 87% of the instances predicted as Anomalies were correct. 

Recall (Sensitivity): Recall measures the proportion of actual positives correctly identified by the model. 

Recall = True Positives / (True Positives + False Negatives) 

For Class 0 (Normal): Recall is 0.86, indicating that 86% of the actual Normal instances were correctly classified. For 

Class 1 (Anomaly): Recall is 0.94, meaning 94% of the actual Anomalies were correctly classified. 

F1-Score: The F1-Score is the harmonic mean of Precision and Recall, balancing the trade-off between the two. 
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F1-Score = 2 × (Precision × Recall) / (Precision + Recall) 

 

For Class 0 (Normal): The F1-score is 0.90, indicating a good balance between precision and recall. For Class 1 (Anomaly): 

The F1-score is 0.91, slightly better than Class 0. 

 

Support: Support represents the number of actual instances in each class. 

Class 0 (Normal): 127 instances 

Class 1 (Anomaly): 127 instances 

Since the dataset is balanced, both classes have equal support. 

 

Accuracy: Accuracy is the overall proportion of correctly classified instances. 

Accuracy = (True Positives + True Negatives) / Total Instances 

The model achieved an accuracy of 0.90 (90%), meaning 90% of the total predictions were correct. 

Macro Average: The Macro Average is the unweighted Precision, Recall, and F1-Score average for all classes. Each class 

contributes equally, regardless of the support. The macro averages for Precision, Recall, and F1-Score are all 0.90, 

reflecting balanced performance across Normal and Anomaly classes. 

Weighted Average: The Weighted Average is the average of Precision, Recall, and F1-Score weighted by each class's 

support (number of instances). Since the dataset is balanced, the Weighted Average values align closely with the Macro 

Average, all being 0.90. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Confusion matrix 

3.2 Performance Metrics 
This is a confusion matrix in Figure 5 to evaluate the performance of a classification model. It visually represents the 

model's predictions against the true labels for two classes: "Normal" and "Anomaly." At the Horizontal axis (Predicted 

labels), the model's predictions are Normal and Anomaly. At the vertical axis (True labels), the actual ground truth labels 

are normal and anomalous. Top-left (True Normal) with the Value 1.1e+02 (approximately 110). This represents the cases 

where the model correctly predicted "Normal." Top-right (False Anomaly), Value: 18. This represents the cases where the 

model incorrectly predicted "Anomaly" when the true label was "Normal." Bottom-left (False Normal), Value: 7. this 

represents the cases where the model incorrectly predicted "Normal" when the true label was "Anomaly." Bottom-right 

(True Anomaly), Value: 1.2e+02 (approximately 120). This represents the cases where the model correctly predicted 

"Anomaly." Heatmap, the intensity of colour represents the count in each cell. Lighter cells have higher counts, while 

darker cells have lower counts. 

 Accuracy: Proportion of all correct predictions 

o Accuracy= 
True Normal+True Anomaly

Total Predictions
 =  

110+120  

110+18+7+120  
 = 

230 

255 
 ≈ 90.2%    
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 Precision (for Anomaly): How many of the predicted "Anomaly" instances were correct 

o Precision= 
True Normal

True Anomaly+False Anomaly
 = 

120  

120+18  
 ≈87%   

 

 Recall (for Anomaly): How many of the actual "Anomaly" instances were correctly identified 

o Recall= 
True Anomaly

True Anomaly+False Normal
 = 

120  

120+7  
≈94.5%    

  

 F1-Score (for Anomaly): Harmonic mean of Precision and Recall 

o F1= 
2×Precision×Recall  

Precision + Recall  
 = 

2×0.87×0.945  

0.87+0.945  
 ≈90.6 

3.3 Observations 

 The model demonstrates high precision and recalls for the majority class ("Normal").  

  While the performance for the minority class ("Anomaly") is slightly lower, the F1-score of 0.83 indicates a good 

balance between precision and recall.  

 False negatives (7 anomalies predicted as normal) highlight the importance of further refinement to reduce 

potential industrial risks.  

This confusion matrix suggests that the model performs well, with high accuracy and recall, but there is room for 

improvement in reducing the number of false positives (18 cases where "Normal" was misclassified as "Anomaly"). 

Table 5: Performance Metrics parameters and their descriptions 

METRIC FORMULA DESCRIPTION 

ACCURACY True Normal + True Anomaly

Total Predictions  
 

The proportion of correctly predicted instances out of all 

predictions. Measures overall model performance. 

PRECISION 

(FOR 

ANOMALY) 

True Anomaly

True Anomaly + False Anomaly 
 

Indicates how many of the predicted "Anomaly" instances 

were anomalies. Measures reliability of anomaly predictions. 

RECALL (FOR 

ANOMALY) 

True Anomaly

True Anomaly+False Normal  
  

Measures how many actual anomalies were correctly 

identified. Evaluates sensitivity to detecting anomalies. 

F1-SCORE 

(FOR 

ANOMALY) 

2×Precision×Recall

Precision + Recall  
  The harmonic mean of Precision and Recall. Balances false 

positives and false negatives for anomaly detection. 

This structured summary Table 5 provides a clear understanding of the metrics used for evaluating the model 

4. CONCLUSIONS 

This study presents a novel hybrid approach that combines mathematical modelling and machine learning to detect 

operational deviations in industrial systems early, specifically in the bottling industry's electro-pneumatic double-acting 

cylinder actuators. The research achieves over 90% accuracy in detecting deviations under dynamic conditions, 

significantly improving compared to existing anomaly detection methods that often lack scalability and robustness in 

varying operational environments. The study contributes new knowledge in hybrid methodology, feature optimisation, and 

industry application. Real-world validation in the bottling sector shows a 25% reduction in machine downtime and 

improved maintenance scheduling. These findings are of immediate interest to the wider research community working on 

predictive maintenance, smart manufacturing, and industrial process optimisation. An intelligent fault detection system for 

electro-pneumatic double-acting cylinder actuators requires computational resources, real-time feasibility, robust 

communication infrastructure, modular expansion, and hybrid approaches. Edge computing solutions and high-speed 

industrial microcontrollers/PLCs are preferred for real-time fault detection, ensuring optimal performance and predictive 

analytics. 

The research aligns with multiple global and regional development goals, including Africa's Union Agenda 2063, 

Sustainable Development Goals (SDGs), and policy implications. Governments and industry stakeholders could adopt 

predictive maintenance frameworks to reduce resource wastage and improve operational resilience, enhancing Africa's 

competitiveness in manufacturing while supporting global efforts to build sustainable industrial systems. Additionally, this 

study contributes to the global discourse on Industry 4.0 and smart manufacturing by addressing challenges in anomaly 

detection for industrial systems. Its emphasis on integrating mathematical modelling with machine learning provides a 

replicable framework that could be scaled across industries worldwide, particularly in developing regions striving to adopt 

advanced technologies. In summary, this research offers a scalable and effective solution to an identified industrial 
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challenge, offering immediate benefits in operational reliability, long-term contributions to industrial growth, and 

alignment with global and regional development objectives. 
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