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Abstract. Eczema, acne, and psoriasis are all skin diseases that
must be diagnosed early on to avoid complications. To detect and
classify skin diseases, many researchers have developed a variety
of support vector machine (SVM)-based classification models.
However, these existing models suffer from imbalanced datasets,
irrelevant feature selection, and difficulty in fine-tuning the
SVM's hyperparameters. As a result, this study developed
“Aquila Optimiser-Support Vector Machine (AO-SVM)” and
“Harris Hawk Optimiser-Support Vector Machine (HHO-SVM)”
to categorise eight (8) different skin diseases, “Granuloma
Annulare (GRA)”, “Haemangioma (HEM)”, “Herpes (HEP)”,
“Hidradenitis Suppurativa (HSP)”, “Keratocanthoma (KEC)”,
“Lupus (LUP)”, “Sebaceous Hyperplasia (SEH)”, and “Sun
Damaged Skin (SDS)”, using 2,700 photos of skin disease
datasets, including 250 photos of each diseased dataset class and
700 photos of normal skin from the Kaggle village datasets. The
images were pre-processed, including reducing the size of the
images, "digital hair removal using the Black-Hat transformation
and inpainting algorithm"”, and eliminating noise, then the
affected area was segmented using the Sobel edge detection
method. The Grey Level Spatial Dependence and Colour Moment
were then used to extract texture, shape, and colour features, and
performance metrics such as false positive rate, specificity,
accuracy, precision, and sensitivity were used to compare the
efficiency of the two classification models (“AO-SVM” and
“HHO-SVM?”). The results show that the “AO-SVM and HHO-
SVM” classification models perform at 95.99% and 96.56%,
respectively. This study adds to the body of knowledge by
developing two refined Multiclass Support Vector Machine
classification models, “AO-SVM and HHO-SVM”, for a subset of
skin diseases. These models optimise the SVM classifier
parameters (penalty cost, C, and kernel function, y) to reduce
false positives and improve classification accuracy. In
conclusion, these two models can be extremely useful in assisting
people living in remote areas who have limited access to expert
dermatologists in detecting their disease as soon as possible.
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1. INTRODUCTION

Acne, alopecia, decubitus ulcers, pruritus, psoriasis,
scabies, urticaria, and other skin and subcutaneous diseases
are widespread health issues that contribute significantly to
the global disease burden [26]. Skin ailments are caused by
"viruses, bacteria, allergies, or fungal infections" and
appear as changes in the colour or texture of the skin [5]. A
variety of factors can contribute to skin diseases, including
genetic ~ predispositions,  environmental  exposure,
infections, autoimmune disorders, and allergies [17].
Granuloma Annulare (GRA), Haemangioma (HEM),
Herpes (HEP), Hidradenitis Suppurativa (HSP),
Keratocanthoma (KEC), Lupus (LUP), Sebaceous
Hyperplasia (SEH), and Sun Damaged Skin (SDS) are
some of the types of skin lesions found worldwide based
on their symptoms and severity. Many patients suffering
from skin disease are unaware of the disease's variants,
traits, and phases, making it difficult and expensive to seek
treatment from the country's few dermatologists.

However, if skin disease is detected early on, a large
number of patients can be successfully treated [2]. As a
result, a computerised framework capable of identifying
and categorising skin diseases in real time is required to
save lives. Many scientists have used "machine learning
techniques like support vector machines (SVM) and image
processing tools" [33] to develop a machine learning
approach for early detection and classification of skin
diseases. Authors in [14], [2], [25], [3], [19], [11], [6], and
[33] are some of the researchers who use SVM for skin
disease detection and classification in their studies.
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Moreover, some of these classification models were
built on imbalanced datasets, which could have resulted in
performance bias towards a specific illness [23]. Similarly,
some of these studies address binary classification rather
than multiclass classification problems. In addition, in
some of these studies, the number of datasets for each class
of skin disease and normal skin is not explicitly stated.
Furthermore, some of these studies were unable to lessen
the size of the extracted features, implying that the addition
of extraneous features to the dataset may have increased
false positive rates, classification model overfitting, and
computational complexity. Moreover, it can be challenging
to select an efficient feature selection technique and
“choose the best features from a collection of extracted
features” [28].

Support vector machine (SVM) is a machine learning
technique used for classification tasks, but fine tuning the
hyperparameters in the SVM is extremely difficult” [34].
However, some researchers have used optimisation
algorithms like "particle swarm optimisation (PSO) and
genetic algorithm (GA)" to fine-tune the SVM parameters.
Author in [31], [20], and [24] are among the researchers
who have used either PSO or GA to fine-tune SVM
parameters in their studies. Furthermore, the “No Free
Lunch (NLF) theorem” developed by [29] states “that no
single algorithm can provide optimal solutions for all
problems; thus, new metaheuristic methods are constantly
proposed or developed by combining existing algorithms
or creating adaptable versions” [29]. As a result, two
optimised models (AO and HHO) were developed and
used to extract relevant features from the extracted features
while also adjusting the support vector machine's
hyperparameters. Finally, two non-hybrid multiclass
classification models (AO-SVM and HHO-SVM) were
created to classify a number of specific skin diseases.

2. LITERATURE REVIEW

Authors in [27] create a classification model for six skin
diseases, including “psoriasis, seborrhoeic dermatitis,
lichen planus, pityriasis rosea, chronic dermatitis, and
pityriasis rubra”, which were tested on Dermatology
datasets. The dataset was acquired from the “UCI Machine
Repository”. This dataset has 35 variables, of which 34 are
linear and 1 is nominal. The dataset underwent data
preprocessing procedures such as variable selection,
cleaning, noise removal, and normalisation. Classification
models were developed using five “data mining techniques
(CART, SVM, DT, RF, and GBDT)”, as well as an
ensemble of all techniques. The “CART, SVM, DT, RF,
and GBDT” models achieved performance accuracy of
94.17%, 96.93%, 93.82%, 97.27%, and 96.25%,
respectively. The results also show that the CART, SVM,
DT, RF, and GBDT models achieved sensitivity
performances of 91.12%, 90.78%, 91.13%, 91.56%, and
92.38%, respectively. The ensemble models had a higher
performance accuracy of 98.64%.

Authors in [18] developed “a convolutional neural
network-based machine learning classification model for
skin disease detection”. The proposed system has been
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evaluated on dermatoscopic photos from the SkinCancer-
MNIST dataset (HAM10000), which is publicly available.
The dataset contains seven different kinds of skin ailments:
"melanocytic nevi, melanoma, benign keratosis, basal cell
carcinoma, actinic keratoses, vascular lesions, and
dermatofibroma". The collected data was split into training
and testing datasets utilising the appropriate ratio. Several
data preprocessing procedures were performed, including
data cleaning (filling in missing values), data smoothing
(identifying and/or removing outliers, noise, and
inconsistencies), and data transformation (converting
actual values from one representation to the target
representation). The collected dataset was used to develop
and train a convolutional neural network. According to the
results, the model achieved 93.35% performance accuracy
at epoch-50 and 93.28% at epoch-20.

Authors in [11] created a skin disease classification
model using fuzzy clustering and machine learning
techniques. The dataset was collected from 50 hospitalised
patients to classify skin disease into two categories: basal
and squamous. The collected data were pre-processed
using a median filter to remove noise from the images.
Fuzzy clustering was used to separate lesions from
uninfected part of the image. variables, of which 34 are
linear and 1 is nominal. The dataset underwent data
preprocessing procedures such as variable selection,
cleaning, noise removal, and normalisation. Classification
models were developed using five “data mining techniques
(CART, SVM, DT, RF, and GBDT)”, as well as an
ensemble of all techniques. The “CART, SVM, DT, RF,
and GBDT” models achieved performance accuracy of
94.17%, 96.93%, 93.82%, 97.27%, and 96.25%,
respectively. The results also show that the CART, SVM,
DT, RF, and GBDT models achieved sensitivity
performances of 91.12%, 90.78%, 91.13%, 91.56%, and
92.38%, respectively. The ensemble models had a higher
performance accuracy of 98.64%.

Authors in [18] developed “a convolutional neural
network-based machine learning classification model for
skin disease detection”. The proposed system has been
evaluated on dermatoscopic photos from the SkinCancer-
MNIST dataset (HAM10000), which is publicly available.
The dataset contains seven different kinds of skin ailments:
"melanocytic nevi, melanoma, benign keratosis, basal cell
carcinoma, actinic keratoses, vascular lesions, and
dermatofibroma". The collected data was split into training
and testing datasets utilising the appropriate ratio. Several
data preprocessing procedures were performed, including
data cleaning (filling in missing values), data smoothing
(identifying and/or removing outliers, noise, and
inconsistencies), and data transformation (converting
actual values from one representation to the target
representation). The collected dataset was used to develop
and train a convolutional neural network. According to the
results, the model achieved 93.35% performance accuracy
at epoch-50 and 93.28% at epoch-20.

Authors in [11] created a skin disease classification
model using fuzzy clustering and machine learning
techniques. The dataset was collected from 50 hospitalised
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patients to classify skin disease into two categories: basal
and squamous. The collected data were pre-processed
using a median filter to remove noise from the images.
Fuzzy clustering was used to separate lesions from
uninfected part of the image. RGB was used to extract
colour features, and SYMLET wavelet analysis was used
to extract texture features like mean, standard deviation,
entropy, ellipticity, intensity, and coefficient of correlation.
The acquired data was divided into 70% for training and
30% for testing. Classification models were created with
the "K-Nearest Neighbour (KNN) and Support Vector
Machine (SVM)" classifiers. The KNN model achieved
91.2% accuracy, exceeding the SVM's 85% accuracy.

Authors in [3] use "machine learning and image
processing techniques" to create classification models for
skin diseases. The authors gathered 377 images from four
disease categories: "acne, cherry angioma, melanoma, and
psoriasis from the Dermnet NZ and Atlas Dermatologico
databases". The acquired images were pre-processed by
first resizing to 250X250 and then applying the median
filter to reduce noise. Furthermore, Otsu's thresholding was
used to segment the image, texture features were extracted
using Gabor and Entropy techniques, and edge features
were extracted using the Sobel method. Three models
based on "SVM, RF, and K-NN" were trained and tested
with the acquired dataset, and the results show that SVM
outperforms the other models in terms of the study's
performance evaluation metrics.

Author in [12] used a "hybrid feature-optimised
multiclass support vector machine (MSVM)" classification
model to create a "skin cancer" detection system. The
dataset for this study was obtained from the freely
available HAMI10000 database, which contains 10,015
dermatoscopic images. To reduce unwanted noise, a
median filter (MF) is employed. The Fuzzy C-Means
method is used to separate homogeneous clusters.
Following feature extraction, the Grey Wolf Optimisation
(GWO) method was used to select the optimal features.
The "Hybrid Feature-Optimized MSVM" classifier is used
to distinguish between cancerous and non-cancerous
images. The "hybrid feature-optimise-MSVM" achieved
98.0% accuracy, 97.2% specificity, and 96.2% sensitivity.

Authors in [10] developed a deep learning-based
classification model for predicting skin diseases. This
study utilised the HAM-10000 Dataset, a widely used and
publicly available dataset in dermatology research. The
HAM-10000 Dataset contains 10,000 images of various
skin conditions, including "nevi, melanoma, benign
keratosis, basal cell carcinoma, actinic keratoses, vascular
lesions, and dermatofibromas". The dataset contains
images of varying resolutions and sizes. Images are resized
to a standard size, typically 224x224 pixels, as part of the
data preprocessing steps to ensure unified input sizes for
the convolutional neural network (CNN). To ensure a fair
assessment of the model's efficacy, the input data is split
into three sections: training, validation, and test. The
splitting is stratified to ensure that each set contains a
proportional representation of various skin ailments. The
training set trains the model, the validation set tunes
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hyperparameters and chooses models, and the test set
assesses the model's final performance. The outcomes
show that the suggested approach achieves an accuracy of
97.05%.

Authors in [16] used the "Wolf Antlion Neural Network
(WALNN) technique to develop a classification model for
detecting and classifying skin diseases". The proposed
method classifies carcinoma of the skin using the "ISIC
archive dataset" as input. This dataset contains 2,750
dermoscopy images. 2000 people were employed as
instructors, 600 for development and 150 for confirmation.
These practical instances from each Data application for a
general audience back up the segmentation technique. The
photos in the classification challenge are divided into three
categories: '"nevi, seborrhoeic keratosis, and melanoma
(1372, 254, and 374)". During pre-processing stage, "a
wavelet denoising, bilateral filtering, and histogram
equalisation" were used to remove noise, improve edges,
and increase contrast. Following that, an improved
thresholding approach is used for segmentation, and the
Grey Level Co-occurrence Matrix is used to extract texture
features like contrast, mean, energy, and homogeneity.
Finally, a classification model based on the Wolf AntLion
Neural Network (WALNN) is used to identify cancerous
skin lesions. The results show that the WALNN model
achieved 98.34% specificity, 99.12% sensitivity, 98.98%
precision, and 99.01% accuracy.

Authors in [13] developed a skin illness classification
framework using "sophisticated image processing
techniques and an attention-based vision approach to assist
dermatologists in solving classification problems". The
dataset is first collected, and then the images are subjected
to a variety of preprocessing techniques, including
"adaptive histogram equalisation (AHI), binary cross-
entropy with implicit averaging (BCEI), gamma correction,
and contrast stretching". The pre-processed images are
subsequently fed into a deep-learning framework built
around vision transformers (ViT). The enhanced images
are then classified using an attention-based approach that
relies on the encoder part of the transformers and multi-
head attention. Extensive experimentation is conducted to
collect various results from two publicly available datasets,
confirming the robustness of the proposed approach. The
suggested method performs competitively on two freely
accessible datasets in comparison to a cutting-edge
approach.

Authors in [8] proposes a "Hybrid Deep Transfer
Learning Method (HDTLM) that combines DenseNetl121
and EfficientNetB0" to improve dermatological illness
prediction. The suggested hybrid approach leverages
"DenseNet121's" dense connectivity to capture intricate
patterns, as well as "EfficientNetBO's "computational
efficiency and scalability. To train and validate, a dataset
of 19,171 images representing 19 skin conditions was used.
Accuracy, precision, recall, and F1-score were among the
performance metrics used to evaluate the model. A
comparison was also made with cutting-edge models such
as "DenseNetl121, EfficientNetB0, VGG19, MobileNetV2,
and AlexNet". The suggested HDTLM achieved a
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precision of 0.95, recall of 0.96, Fl-score of 0.95, and
overall accuracy of 98.18%, consistently outperforming
baseline models. The findings indicate that the hybrid
model has a better ability to generalise across multiple skin
disease categories.

3. METHODOLOGY

This system's algorithms include image resizing, RGB
to grayscale image conversion, bi-histogram equalisation,
a Black-Hat transformation and inpainting algorithm to
remove digital hair, adaptive median filtering, Sobel
operator, GLCM algorithm, AO-SVM classification model
and HHO-SVM classification model, all designed using
MATLAB software. Figures 1 and 2 show a block diagram
of the proposed classification model's methodology, as
well as a flowchart for the trained and tested skin image
datasets using AO-SVM or HHO-SVM.

3.1 Image Acquisition

Two thousand seven hundred images of skin comprise
eight different skin diseases and normal skin taken from
the Kaggle village collection. An equal number of datasets
from the original dataset were randomly selected for each
of the diseased datasets to prevent an unbalanced dataset
for class labelling. The dataset is divided into nine
categories: seven hundred (700) normal skin, two hundred
and fifty (250) each for granuloma annulare (GRA),
haemangioma (HEM), herpes (HEP), hidradenitis
suppurativa (HSP), keratocanthoma (KEC), lupus (LUP),
sebaceous hyperplasia (SEH), and sun damaged skin
(SDS). Figure 3 depicts a sample of each class of diseased
datasets and normal skin datasets.

3.2 Image Preprocessing and Segmentation

During the preprocessing phase, the RGB images were
resized using MATLAB's image resize toolbox to remove
unnecessary  pixel information and improve the
classification model efficiency. Bi-histogram equalisation
was used to improve contrast, and RGB images were
converted to greyscale. A Black-Hat transformation and an
inpainting algorithm were used to remove digital hair. The
images were then denoised using the adaptive median
filtering method prior to image segmentation processing.
To achieve the necessary segregation, the proposed model
divides the affected and unaffected regions of a leaf using
the Sobel edge detection algorithm.

3.3 Feature Extraction

Following the segmentation procedure, the three
features of colour, shape, and texture were extracted. To
extract shape and texture features, the Gray-Level Spatial
Dependence Matrix was used, while colour features were
extracted using the Colour Moment. The four colour
moments extracted were medium, standard deviation,
asymmetry, and kurtosis. The Haralick model was used to
extract five texture attributes: energy, contrast,
homogeneity, correlation, and entropy. Six shape features
were identified: eccentricity, area, solidity, rectangularity,
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equidimeter, and perimeter. To fuse all three features, the
linear combination method was used.

3.4 Formulation of Aquila Optimiser (AO) and Harris
Hawk Optimiser (HHO) Models

Algorithms 1 and 2 are used to formulate the model for
AO and HHO used in this study.

Algorithm 1: Aquila Optimiser Model

Algorithm 1: Pseudocode of Aquila Optimiser (AQO)
Input: size of population (N), maximum number of
iterations (Q)
Initialisation phase:
Initialise the Aquila Optimizer's parameters (i.e., S, ¢, O, K
a B V,gh S, r,y, and w).
Outputs: Solution to the problem
WHILE (end condition is not
encountered) do
Evaluate the objective function
values.
Cse(q)= Determine the most optimal obtained solution
based on the objective values.
for (i=1,2...,N)do
Revise the current solution's mean value

CMe(q)'
Revise the x, y, P1, P», LV(DI),
UF(q), Cye, 1
if g <) x Q Then
if rmd <Y

Step 1: Expanded Exploration (C)
The existing solution can be revised using Equations (1)
and (2)

C(g+1) = Caol@) X (1-2)+ (oo () — Caal@) x Tmd) (1)

where C, (g + 1) indicates the outcome of the subsequent
iteration at time q, Cge (q) is the optimal solution generated
by the algorithm through repetition q. It depicts the
estimated target spot. The rmd is an arbitrary integer
within range of zero and one; q and Q represent the present
and ultimate number of repetitions, respectively. The term

(1 —%) is used to control the number of instances in the

expanded search (exploration) and Cwe (q) represent the
mean spot of the present solution within q repetition,
which is expressed in Equation (2).

l T
Coe(q) = - ‘3:1 C; (@ ¥YN=12,..... , S 2

where N is the number of possible solutions and S is the
problem's dimension size (population size).

if Objective (Ci(g+1)) < Objective (C(g)) then
Uq) =(Ci(g+1))
if Objective (Ci(g+1)) < Objective
(Cr(q)) then
148
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Cse(q) =Ci(q+1)
endif
endif
else

Step 2: Narrowed Exploration (C2)
The present solution can be updated by using Equation

A3).
C2(q+1) =Cge(q) X LV(DI) + Crlq) + (y—x) xrmd (3)

where Cr (q) is a generic solution in the range [1, N] at the
i iteration as in [1]. C,(gq + 1) indicates the outcome for
the subsequent iteration at time q. LV (DI) is
mathematically expressed in Equation (4). Equations (6),
(7), (8), (9) and (10) can be used to compute both y and x,
which model the spiral flight trajectory in the search.

Lv(DI) =K x££ )
Ihl

where K is a constant value of 0.01, g and h are arbitrary
numbers that vary from 0 to 1,  is a constant value of 1.5,
u and is determined by employing Equation (5).

rmd(1 + a) x Sin { Z25,

H= a1 ®)

rmd ('lgﬂj ®ax2(—=)

x =rmd X Cos (&) (6)
y=rmd X Sin (#) (7

where rmd and 8 can be determined using Equations (8),
(9) and (10).

rmd =rmd; +V x 8 ®)
3 xm
0, =—- (10)

where rmd, refers to an integer indicating the search
cycles between 1 and 20 as in [36], V is a modest value,
fixed at 0.00565, w equal to 0.005, and S; denotes the
random integer from the range of 1 to the dimensions as in

[1].

if Objective (Ca(g+1)) < Objective (C(g)) then
Uq) =(Cagt1))
if Objective (Ca(g+1))
< Objective (Cge(q)) then
Cre(q) =Ca(g+1)
endif
endif
endif
else
if rmd =%
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Step 3: Expanded Exploitation (Cs3)
The present solution can be updated by using Equation

(11).

C3(q+1)= (Coo(q) ~ Cu(@)) X f —rmd +((upp —low) xrmd +Iow)xy — (11)
where C4(qg + 1) indicates the outcome for the subsequent
iteration at time q, Cpy(q) indicates the mean position in
the i generation, Cg.(g) is the best Aquila position
obtained in this iteration, rmd is an arbitrary generated
number within range of [0, 1], § and y are valuable
utilisation adjustment parameters set at a fixed value of 0.1
used to control exploitation search space, and upp and low
refer to the upper and lower boundaries as in [1].

if Objective (Cs(g+1)) < Objective

(C(g)) then
C(q) =(Gs(g+1D))
if Objective (Cs(g+1))
< Objective (Cpe(q))
then
Cse(q) =C3(g+1)
endif
endif

else

Step 4: Narrowed Exploitation (Ca4)
Reverse the current solution using Equations (12), (13),
(14), and (15).

Clq+1)=UF X Cyylg)- (B, X C(q) Xrmd) =P, xIV(DD) + rmd x 2, (12)
2 xrmd -1

UF(q) = q X T (13)

P,=2 x rmd —1 (14)

P=2x(1-7) (15)

where C,(g+ 1) indicates the subsequent iteration's
outcome at time g, UF. represents a quality function that
helps to stablise search strategies. P, stands for the various
initiatives of the Aquila optimiser when monitoring target
during elusion. P is a value that drops from 2 to O,
indicating the gradient of the flight utilised by the Aquila
optimiser to monitor target during elusion from the first to
the last position. C(g) is the present outcome in the qth
iteration, according to authors in [1] and LV (DI)
represents the Levy flight distribution function.

if Objective (Ca(g+1)) < Objective (C(q))
then

Cq) =(Ca(gt1))
if Objective (Ca(g+1))
< Objective (Cge(q)) then
Crlq) =Ca(g+1)
endif
endif
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endif
endif
endfor
endwhile
Return Optimal solution (Cg.)

ALGORITHM 2: PSEUDOCODE OF HARRIS HAWK

OPTIMISATION (HHO)

Input: size of population (N), maximum number of
iterations (Q)
Initialisation phase:
Initialise the parameters of the Harris
Hawk Optimizer (i.e., DI, q, O, p, VI, SE, v, low,
upp, and t).
Initialise H; i=1, 2, ..., M
Outputs: Outcome to the problem
While (g < Q) do

Determine the objective function values for every hawk,
H;. Identify the prime instance (target position)
Check if it is beyond bounds.
For every hawk (H;)

Execute Transition from Exploration Phase to
Exploitation Phase
Reverse the convergence factor with Equation (16) as in

[9].

ES=2 xESUx(l—%) (16)
where ES is the convergence factor, q is the present
repetition number, Q is the ultimate repetition number, and
ES, stand for initial energy of the target which can be
expressed mathematically using Equation (17).

Reverse the initial energy of target using Equation (17).

ES; =2 xrmds —1 a7
Calculate the exploration range of the target with

Equation (18).

J=2 x(1—rmdg) (18)

J represents the random jump strength of the target and

rmdgis an equally distributed random number in (0,1), If
(|ES|= 1) then

Execute Exploration Phase
Update hawk position using Equation (19) as in [9].

t205

Hmnd [Q) _mdl ‘Hmnd[Q) -1x mdz X H[(mr ’
t<05

) ) (v + -

(19)

where rmd1, rmd2, rmd3, rmd4, and t are stochastic value
within the range [0,1]. A hawk spot at the current iteration
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and subsequent iterations are denoted by H(q) and H(q+1),
respectively. Hp,.(q) and H, .4(q) stand for optimal
spot and stochastically selected hawk spot, respectively.
H,;.(q) stands for mean value of the spots in the present
candidate solution calculated with Equation (20) as in [9].

1
Hye(q) = ;Z?il H,(q) (20)
where M is the population size
Endif

Elseif (IES| < 1) then
If (rmd >z and |[ES[|>"%)

Execute Soft Besiege to Siege the Prey
Update hawk position using Equation (21).

H(g+1) =2H(q) —ES|] X Hpey (@) — H(q)|
'ﬁH(Q) = Hpre_v(':?) - H(q)

21)

where AH(q) stands for the location difference between
the present location of the target and the present location,
H, .., (q) stands the location of the prey, and H(q) is the
present location.

Endif

If (rmd =% and |[ES|<!2)

Execute Hard Besiege to Siege the Prey
Update hawk position using Equation (22).

H(q +1) = Hye, (q) — ES|AH(q)]

Endif
If (rmd <% and |[ES|>%)

(22)

Execute Soft Besiege with Progressive Rapid Dives to
Siege the Prey

Update hawk position using Equations (23), (24), (25),
(26), and (27).

A= Hnre_v (Q) - ESl I % H;Dre_v (':?) - H(Q)l

B=A + SE x LVY(DI)

(23)
(24)
where DI is the magnitude to resolve the issue, SE is an

arbitrary vector whose dimension is DI and LVY is the
levy flight function defined as in Equation (25).

LVI(DI) = 001 xB8 (25)
il
o
) 1
rmd X(1+ p) xSin (28) | P
(rmd ('%) X ¥ 2x c"”z;lj) (26)
where 9, VI € (0,1), p is a constant of 1.5 as in [9].
(A IFF(A) < F(H(q))
Hg+1) = { B IF F(B) < F(H(q)) @7)
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where A and B is the next position for the new iteration
Endif
If (rmd <2 and |[ES|<%)

Execute Hard Besiege with Progressive Rapid Dives to
Siege the Prey

Update hawk position using Equations (28), (29), and
(30).

A= Hrarg,v (Q) - E'Sl Ix Hprg_v ((i’) - HM@(QN (28)
B=A + SE x LVY(DI) (29)
_ A IFF[A} = F[H[q))
Ha+ D ={3 rrm) < s 30
Endif
Endif
Endfor
Q=q+1
End while

Output the best solution H,..,, and its fitness value

3.4 Formulation of Aquila Optimiser Model and Harris
Hawk Optimiser Model for Optimising Support Vector
Machine Parameters

Algorithms 3 and 4 were used to formulate the model
for AO for the optimisation of support vector machine
parameters and HHO for the optimisation of support vector
machine parameters in this study.

Algorithm 3: AO Model for
Parameters

1: Input: The datasets, which include both the train
and test datasets

2: Subset the training and testing datasets using 10-
fold cross-validation.

3: Setting the AO parameters and particle
initialisation: Create the first particles with the
feature mask C and Y combined. As in
Algorithm 1, set the AO parameters that include
the low and upp represent lower and upper bound
of the problem, M represent total number of
potential solutions, s represent population size, q
and Q represents both initial and maximum
iterations, rmd random value range between 0 and
1, V small value assigned with 0.00565, a
unchangeable value assigned with 0.01, o fixed
value at 0.005 and & at 3.142.

4: Set the iteration countto v + 1.

Optimizing SVM

5: while (v<V)do
6: Use the chosen feature subset to train the SVM
model

a) Preprocessing of training sets: choose input
features for training datasets based on the
feature mask that is shown in a particle's first
part.

https:/ /doi.org/10.53982 / ajeas.2025.0301.13-]
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b) SVM classifier accuracy calculation:

considering (C, y) that is depicted in the

subsequent and third base components of a

particle, use Equation (31) to get the average
classification accuracy (CLA).

ACL
ACT+NACTL

CLA = x 100% (31)
where the ACL and NACL, respectively, represent
how many instances were accurately and

inaccurately classified by the SVM classifier.

(c) Regarding the (C, y) and the entire training
set T, the trained model's classification
accuracy can be evaluated using Equation
31).

7: Apply Equation (32) to evaluate the Fitness

Function (FitFuc) as defined by authors in [4].

544
N

i = _Ea
FitFuc =px (1-5)+0 X

(32)

8: Set up potential solutions by utilising Equation
(33).

Gy =rdm X (upp; —low;) + low; 1= 1234, M;=1234 ..§ (33)

where rdm stand for arbitrary number, low; and
upp; stand for the j" minimum bound and j®
maximum bound of the given problem,
respectively. M is the aggregate of feasible
outcomes and S represents the number of
instances
: forv=1toVdo

10: To update potential solutions C; ;, use Equations
(1, 2), 3), (4), (5), (6), (7), (8), (9), (10), (11),
(12), (13), (14), and (15)

11: Assess the Fitness Function (FitFuc) of the
updated potential solutions using Equation (32)

12: end for

13: Training and Testing the SVM classifier
End while

14: Proceed to step 15 if the stopping criteria are met
(i.e., v>V); if not, proceed to step 3.

15: Output: Obtain the optimal value for C and y from
the optimal solution

Algorithm 4: HHO Model for Optimizing SVM
Parameters

1: Input: The datasets, which include both the train
and test datasets

2: Subset the training and testing datasets using 10-
fold cross-validation.

3: Setting the HHO parameters and particle
initialisation: Create the first particles with the
feature mask C and Y combined. As in
Algorithm 2, set the HHO parameters, which
include the rmd, the random number range from 0
to 1, ¥ and VI fixed number range from 0 to 1, p
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constant value at 1.5, upp and loo represent lower classification accuracy can be evaluated
and upper bound of the problem, o represents using Equation (31).
fixed value range from 0 to 1, and o represents 7: Apply Equation (32) to evaluate the Fitness
position deviation of the dung beetle at fixed Function (FitFuc) as defined by authors in [4].
value of -1 or 1, the iteration v=0, 8 forv=1toVdo

4: Set the iteration count to v + 1. 9: To update potential solutions C(q), use Equations
5: while (v<V)do (16), (17), (18), (19), (20), (21), (22), (23), (24),
6: Use the chosen feature subset to train the SVM (25), (26), (27), (28), (29), and (30)
model 10: Assess the Fitness Function (FitFuc) of the
a. Preprocessing of training sets: choose updated potential solutions using Equation (32)
input features for training datasets 11: end for
based on the feature mask that is shown 12: Training and Testing the SVM classifier
in a particle's first part. End while
b. SVM classifier accuracy calculation: 13: Proceed to step 14 if the stopping criteria are met
considering (C, v) that is depicted in the (i.e., v>V); if not, proceed to
subsequent and third base components of step 3.
a particle, use Equation (31) to get the 14: Output: Obtain the optimal value for C and y from
average classification accuracy (CLA). the optimal solution
c. Regarding the (C, y) and the entire
training set T, the trained model's
Segmentation Feature Extraction Classification
Datasets Acquisition Preprocessing Classes of Skin Diseases

S i J

.
A

Colour Features Texture Features Shape Features
Standard Deviation
Asymmetry

Kurtosis

Figure 1: A block diagram of the developing skin diseases classification models
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A 4
Acquire skin images for training Load images of skin for testing
\d
Resise the images, convert them into grayscale, contrast Resise the images, convert them into grayscale, contrast
enhancement with Bi-histogram Equalisation, hair enhancement with Bi-histogram Equalisation, hair removal
removal using “Black-Hat Transformation and inpainting using “Black-Hat Transformation and inpainting
Algorithm™ and then adaptive median filtering to remove Algorithm” and then adaptive median filtering to remove
noise from the images noise from the images

: :

Segmentation using the “Sobel Edge
Detection technique”

Segmentation using the “Sobel Edge
Detection technique”

¢  Extract Colour Features using Colour Moment
o  Extract Texture and Shape Features using GLCM

A

+  Apply AO and HHO as an SVM parameter selection
¢ C(Classify the Skin Diseases using AO-SVM/ HHO-SVM

Recognition Result

i

Yes

Test another image?

Figure 2: Flowchart showing trained and tested skin images datasets with AO-SVM and HHO-SVM classification
model
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Herpes (HEP) Skin Disease Samples

Hideradenitis Suppuratava (HSP) Skin Disease Samples

Keratocanthoma (KEC) Skin Disease Samples

Lupus (LUP) Skin Disease Samples

Normal (NOM) Skin Samples
Figure 3: Sample of each class of diseased datasets and normal skin datasets

3.5 Classification of Skin Diseases using Multiclass
Classification Models (AO-SVM and HHO-SVM)
Selected disease segment images from the skin
classified using classification models in connection with a
Directed Acyclic Graph Support Vector Machine
(DAGSVM), which can classify more than two data
classes. Multiclass SVM is reduced to a two-class
https://doi.org/10.53982/ajeas.2025.0301.13-]

classification problem in this research. In the study, the
training dataset, SE = (ga; hy)'v=1, where the class label is
h.e {0,1}and the feature vector is g, € R". The linear
classifier creates a decision function (df) using Equation
(34).

df (g) = vec* g +e (34)
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where e is the bias and vec = (vec;, vec;..., vecn) is the
weight vector. If df'(g)> 0, the prediction label is +1; if not,
it is -1. The convex optimisation problem with maximal
margin 2/||vec||* and minimal training errors is represented
by Equation (35), which the created standard Support
Vector Machine (SVM) solved through the identification
of a region of space df (g) = 0 between two classes.

T 2 £ "

min| =3 [[vec|” +c3 > o} (35)

= a=l uzh,

Subject to the constraints
vec,, G, +e, 2Vec,-G, +e, +2-¢, (36)
for

and,
@, 20 for b=1,....k (37)

where /1, € {1,....,X } the multiclass labels of the data
vectors and ue{l,....,X } \ h, the multiclass labels

excluding hb are allowed by @ the training error loss

function for possibly non-linearly separable data. The
specified parameter C controls the amount of
misclassification on the training set of data by balancing
the margin and losses.

Authors in [35] discovered that a large C corresponds to
giving the errors a higher penalty, which lowers the margin,
while a small C allows for more errors and increases the
margin. In this study, K = 8 movements were categorised
using the DAG method. There is a total of K (K-1)/2
binary classifiers, or 28 binary classifiers for skin-related
diseases, that are involved in this classification process. In
the training phase, one binary classifier is assigned to each
pair of movements. The soft margin strategy is necessary
to keep the classes apart because there is a chance that the
data for the two distinct classes will overlap during each
binary classifier's training. However, the training step
involves using inequality constraints to solve the quadratic
optimisation problem given in Equation (35) to train 28
different binary classifiers for the classification of skin
diseases in the dataset. The constant C's value and the
kernel value were utilised for mapping the input feedback.

Optimisation Problem Formulation of AO-SVM
The AO algorithm searches for the best combination of
SVM hyperparameters as shown in Equation (38).

Objective: minp =1 - Accuracy (Cy)

Cy

(38)

where C is regularization parameter, y is the kernel
coefficient (for RBF kernel), p is loss (or fitness function),
and Accuracye, is classification accuracy via cross-
validation.

https:/ /doi.org/10.53982 / ajeas.2025.0301.13-]
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Each candidate solution (search agent) is a vector of
hyperparameters as shown in Equation (39).
Xi=[Cyy,] (39)
Each candidate solution is evaluated using an SVM
model, trained with the parameters from AO. A 10-fold

cross-validation is typically used to measure the
generailisation ability represented by Equation (40).
Fitness-1-meanAccuracyqy (40)

Optimization Problem Formulation of HHO-SVM
The HHO algorithm searches for the best combination

of SVM hyperparameters represented by Equation (41).

(41)

Objective: minp=1-Aceuracyy (C,y, selected features)

by

Each candidate solution (search agent) is a vector of
hyperparameters shown in Equation (42).
Xi=[Coy, f1, for o fal (42)

fj € {0,1}: binary indicator for selecting the j* feature
d: total number of features

Search Process
1. [Initialise population: Randomly generate N sets of
[C.y]
2. Evaluate fitness: For each, train SVM and
compute CV accuracy
Update population: Using AO or HHO strategy
Select best: Keep the best solution found so far
5. [Iterate: Repeat for a number of iterations or until
convergence

W

4. RESULTS AND DISCUSSION
Table 1 shows performance measures of the
experimental outcomes of the proposed models, while
Table 2 compares their performance measures to that of
existing classification models.

4.1 Performance Evaluation Metrics of the Developed
Classification Models (AO-SVM and HHO-SVM)

The AO-SVM model achieved FPR performance of
2.86, 3.14, 3.57, 2.57, 2.71, 3.00, 2.57, and 3.29% and the
HHO-SVM model achieved FPR performance of 2.43,
2.71, 3.14, 2.14, 2.29, 2.57, 2.14%, and 2.86 on the
diseased dataset for each class comprising GRA, HEM,
HEP, HSP, KEC, LUP, SEH, and SDS, respectively. Also,
the AO-SVM model achieved specificity performance of
97.14, 96.86, 96.43, 97.43, 97.29, 97.00, 97.43, and
96.71% and the HHO-SVM model achieved specificity
performance of 97.57, 97.29, 96.86, 97.86, 97.71, 97.43,
97.86, and 97.14% for each class comprising GRA, HEM,
HEP, HSP, KEC, LUP, SEH, and SDS, respectively. More
so, the AO-SVM model achieved sensitivity performance
of 92.80, 91.60, 90.40, 93.20, 94.00, 92.00, 93.20, and
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91.20% and the HHO-SVM model achieved sensitivity of
94.00, 92.80, 91.60, 94.40, 95.20, 92.80, 94.40, and
92.40% on the diseased dataset for each class GRA, HEM,
HEP, HSP, KEC, LUP, SEH, and SDS, respectively.
Furthermore, the AO-SVM model achieved precision
performance of 92.06, 91.24, 90.04, 92.83, 92.52, 91.63,
92.83, and 90.84% and HHO-SVM model achieved
precision performance of 93.25, 92.43, 91.24, 94.02, 93.70,
92.80, 94.02, and 92.03% on the diseased dataset for each
class comprising GRA, HEM, HEP, HSP, KEC, LUP,
SEH, and SDS, respectively. Finally, the AO-SVM model
achieved performance accuracy of 96.00, 95.47, 94.84,
96.32, 96.42, 95.68, 96.32, and 95.26% and HHO-SVM
model achieved performance accuracy of 96.63, 96.10,
95.47, 96.95, 97.05, 96.21, 96.94, and 95.89% on the
diseased dataset for each class comprising GRA, HEM,
HEP, HSP, KEC, LUP, SEH, and SDS, respectively shown
in Table 1.

The results in Table 1 show that the HHO-SVM
multiclass classification model outperforms the AO-SVM
multiclass classification model in all performance metrics.
However, HHO model is very strong in exploitation search
behaviour but very weak in exploration search behaviour
whereas, AO model is very week in exploitation search
behaviour but very strong in exploration search behaviour.
The “No Free Lunch (NFL) theorem states that an
algorithm’s performance on one problem category does not
assurance its performance on other categories” [30]. As a
result, the effectiveness and superiority of HHO-SVM
across AO-SVM in this study is heuristic. Nonetheless, "it
is clear that the efficacy of any type of algorithm,
including a nature-inspired optimisation algorithm (NIOA),

Ayoade et al!
is profoundly influenced by the algorithm's design
viewpoint, such as optimal mixing of exploration and
exploitation" [21].

4.2 Performance Evaluation Metrics Comparison of the
Developed Classification Models with the Existing
Classification Models in Skin Diseases Classification

This study's findings are consistent with previous
research on skin disease detection and classification
algorithms. Table 2 compares the results of the suggested
classification models to other developed multiclass support
vector machine classification models and currently
available classification models. This study, however, bears
similarities to studies conducted by [22] that optimise
support vector machine with fruit fly optimisation (FSO-
SVM) and [16] that optimise neural network with Wolf
antlion optimiser (WALNN). Regarding the performance
evaluation metrics used, as shown in Table 2, the
developed models (AO-SVM and HHO-SVM)
outperformed some of the existing models.

In light of the experiment's outcomes, the developed
multiclass classification models (AO-SVM) and (HHO-
SVM) is more sensitive, specific, and accurate.
Furthermore, the correctness of the (AO-SVM) and (HHO-
SVM) models are further validated by their false positive
rate result. The two models thus offered improved
specificity, sensitivity, accuracy, and precision along with
a reduction in calculation time and false positive rate. The
performance evaluation results of the (AO-SVM and
HHO-SVM) models are thus comparable to those of the
other existing conventional infected skin diseased
classification models.

Table 1: Performance evaluation metrics of the developed multiclass support vector machine classification models on
skin datasets

AllDiseased  op\  HEM HEP HSP KEC LUP SEH SDS AVE
Datasets
False Positive Rate (FPR) (%)

AO-SVM 4.57 2.86 3.14 3.57 2.57 2.71 3.00 2.57 3.29 3.14
HHO-SVM 4.14 2.43 2.71 3.14 2.14 2.29 2.57 2.14 2.86 2.71
Specificity (%)

AO-SVM 95.43 97.14 96.86 9643 9743 97.29 97.00 9743 96.71 96.86
HHO-SVM 95.86 97.57 9729 9686 97.86 97.71 97.43 97.86 97.14  97.29
Sensitivity (%)

AO-SVM 98.30 92.80 91.60 9040 93.20  94.00 92.00 9320 91.20  92.97
HHO-SVM 98.45 94.00 92.80 91.60 9440  95.20 92.80 9440 9240  94.01
Precision (%)

AO-SVM 98.40 92.06 91.24  90.04 92.83 92.52 91.63 92.83 90.84  92.49
HHO-SVM 98.55 93.25 92.43 91.24 94.02 93.70 92.80  94.02 92.03 93.56
Accuracy (%)

AO-SVM 97.56 96.00 9547 9484 9632  96.42 95.68 9632 9526  95.99
HHO-SVM 97.78 96.63 96.10 9547 96.95 97.05 96.21 96.94 95.89  96.56
Note: Granuloma Annulare (GRA), Hemangioma (HEM), Herpes (HEP), Hidradenitis Suppurativa (HSP),

Keratocanthoma (KEC), Lupus (LUP), Sebaceous Hyperplasia (SEH), Sun Damaged Skin (SDS), Average (AVE),
Aquila Optimiser-Support Vector Machine (AO-SVM), Harris Hawk Optimiser-Support Vector Machine (HHO-SVM

https:/ /doi.org/10.53982 / ajeas.2025.0301.13-]
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Table 2: Performance evaluation metrics comparison of developed classification models with the existing classification
models in skin disease classification

False Positive Specificity Sensitivity Precision Accuracy
Author(s) and Models Rate (%) (%) (%) (%) (%)
12]
“Support Vector Machine (SVM)” - - 97.57 97.71 97.00
‘K-Nearest Neighbour (KNN)” - - 95.57 95.71 95.00
“Decision Tree (DT)” - - 95.14 95.14 95.00
[32]
“Random Forest (RF)” - - 94.00 94.00 87.00
“Decision Tree (DT)” - - 74.00 75.00 68.00
“Logistic Regression (LR)” - - 55.00 56.00 58.00
“Support Vector Machine (SVM)” - - 50.00 54.00 53.00
“K-Nearest Neighbour (KNN)” - - 50.00 54.00 48.00
131
“Support Vector Machine (SVM)” - - 90.80 91.00 90.70
“Random Forest (RF)” - - 84.20 84.80 84.20
“K-Nearest Neighbour (KNN)” - - 67.10 72.80 67.10
12]
“Hybrid Features Optimised MSVM”’ - 97.26 96.20 - 98.00
[22]
“Fruit Fly Optimization-Support
Vector Machine (FOA-SVM)” ) 96.00 98.50 ) 98.80
[16]
“Wolf AntLion Neural Network
(WALNN)” - 98.34 99.12 98.98 99.01
Developed Models
AO-SVM 3.14 96.86 92.97 92.49 95.99
HHO-SVM 2.71 97.29 94.01 93.56 96.56

Note:
Optimiser-Support Vector Machine (HHO-SVM)

5. CONCLUSION

Skin disease has been the most common health problem
facing many countries and varies accordingly from
symptom and severity. Skin disease may be permanent,
temporary, painful or painless based on the affected
disease. However, many skin diseases are life-threatening,
which need prompt and continuous monitoring to provide
proper treatment and ensure faster recovery must be
diagnosed and treated early to avoid severe consequences.
This study uses clinical and histopathological attributes to
classify ESD, such as Granuloma Annulare, Hemangioma,
Herpes, Hidradenitis Suppurativa, Keratocanthoma, Lupus,
Sebaceous Hyperplasia, and Sun Damaged. We created
two non-hybridized models (AO and HHO) to fine-tune
the support vector machine's hyperparameters.  The
research project was carried out in several stages,
beginning with dataset collection from the Kaggle.com,
followed by data preprocessing and segmentation, and
finally feature extraction. The classification was done, and
the effectiveness of the techniques was evaluated using
False Positive Rate (FPR), specificity, sensitivity,
precision and accuracy. Based on the findings, the base
models achieved different accuracies in classifying the 8
different skin diseases, and HHO-SVM achieved the
highest performance accuracy with 96.56% compared to
AO-SVM with 95.99%. As a result, the developed models
were highly effective at identifying and categorising
https:/ /doi.org/10.53982 / ajeas.2025.0301.13-]

Histogram Oriented Gradient (HOG), Aquila Optimiser-Support Vector Machine (AO-SVM), Harris Hawk

common dermatological conditions. Such models, when
combined with technology such as telemedicine, can be
extremely beneficial in assisting people living in sparsely
populated areas with limited access to specialised
dermatological care in detecting disease early and then
taking timely measures to cure the disease and prevent the
spread of communicable skin disease.
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