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Abstract: Eczema, acne, and psoriasis are all skin diseases that 

must be diagnosed early on to avoid complications. To detect and 

classify skin diseases, many researchers have developed a variety 

of support vector machine (SVM)-based classification models. 

However, these existing models suffer from imbalanced datasets, 

irrelevant feature selection, and difficulty in fine-tuning the 

SVM's hyperparameters. As a result, this study developed 

“Aquila Optimiser-Support Vector Machine (AO-SVM)” and 

“Harris Hawk Optimiser-Support Vector Machine (HHO-SVM)” 

to categorise eight (8) different skin diseases, “Granuloma 

Annulare (GRA)”, “Haemangioma (HEM)”, “Herpes (HEP)”, 

“Hidradenitis Suppurativa (HSP)”, “Keratocanthoma (KEC)”, 

“Lupus (LUP)”, “Sebaceous Hyperplasia (SEH)”, and “Sun 

Damaged Skin (SDS)”, using 2,700 photos of skin disease 

datasets, including 250 photos of each diseased dataset class and 

700 photos of normal skin from the Kaggle village datasets.  The 

images were pre-processed, including reducing the size of the 

images, "digital hair removal using the Black-Hat transformation 

and inpainting algorithm", and eliminating noise, then the 

affected area was segmented using the Sobel edge detection 

method. The Grey Level Spatial Dependence and Colour Moment 

were then used to extract texture, shape, and colour features, and 

performance metrics such as false positive rate, specificity, 

accuracy, precision, and sensitivity were used to compare the 

efficiency of the two classification models (“AO-SVM” and 

“HHO-SVM”).  The results show that the “AO-SVM and HHO-

SVM” classification models perform at 95.99% and 96.56%, 

respectively. This study adds to the body of knowledge by 

developing two refined Multiclass Support Vector Machine 

classification models, “AO-SVM and HHO-SVM”, for a subset of 

skin diseases. These models optimise the SVM classifier 

parameters (penalty cost, C, and kernel function, γ) to reduce 

false positives and improve classification accuracy.  In 

conclusion, these two models can be extremely useful in assisting 

people living in remote areas who have limited access to expert 

dermatologists in detecting their disease as soon as possible.  

Keywords: AO-SVM, Black-Hat Transformation, Granuloma 

Annulare, HHO-SVM, Support Vector Machine. 

 

1. INTRODUCTION 

Acne, alopecia, decubitus ulcers, pruritus, psoriasis, 

scabies, urticaria, and other skin and subcutaneous diseases 

are widespread health issues that contribute significantly to 

the global disease burden [26]. Skin ailments are caused by 

"viruses, bacteria, allergies, or fungal infections" and 

appear as changes in the colour or texture of the skin [5]. A 

variety of factors can contribute to skin diseases, including 

genetic predispositions, environmental exposure, 

infections, autoimmune disorders, and allergies [17]. 

Granuloma Annulare (GRA), Haemangioma (HEM), 

Herpes (HEP), Hidradenitis Suppurativa (HSP), 

Keratocanthoma (KEC), Lupus (LUP), Sebaceous 

Hyperplasia (SEH), and Sun Damaged Skin (SDS) are 

some of the types of skin lesions found worldwide based 

on their symptoms and severity.  Many patients suffering 

from skin disease are unaware of the disease's variants, 

traits, and phases, making it difficult and expensive to seek 

treatment from the country's few dermatologists. 

However, if skin disease is detected early on, a large 

number of patients can be successfully treated [2]. As a 

result, a computerised framework capable of identifying 

and categorising skin diseases in real time is required to 

save lives. Many scientists have used "machine learning 

techniques like support vector machines (SVM) and image 

processing tools" [33] to develop a machine learning 

approach for early detection and classification of skin 

diseases. Authors in [14], [2], [25], [3], [19], [11], [6], and 

[33] are some of the researchers who use SVM for skin 

disease detection and classification in their studies.  
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Moreover, some of these classification models were 

built on imbalanced datasets, which could have resulted in 

performance bias towards a specific illness [23].  Similarly, 

some of these studies address binary classification rather 

than multiclass classification problems.  In addition, in 

some of these studies, the number of datasets for each class 

of skin disease and normal skin is not explicitly stated.  

Furthermore, some of these studies were unable to lessen 

the size of the extracted features, implying that the addition 

of extraneous features to the dataset may have increased 

false positive rates, classification model overfitting, and 

computational complexity. Moreover, it can be challenging 

to select an efficient feature selection technique and 

“choose the best features from a collection of extracted 

features” [28]. 

Support vector machine (SVM) is a machine learning 

technique used for classification tasks, but fine tuning the 

hyperparameters in the SVM is extremely difficult” [34].  

However, some researchers have used optimisation 

algorithms like "particle swarm optimisation (PSO) and 

genetic algorithm (GA)" to fine-tune the SVM parameters. 

Author in [31], [20], and [24] are among the researchers 

who have used either PSO or GA to fine-tune SVM 

parameters in their studies.  Furthermore, the “No Free 

Lunch (NLF) theorem” developed by [29] states “that no 

single algorithm can provide optimal solutions for all 

problems; thus, new metaheuristic methods are constantly 

proposed or developed by combining existing algorithms 

or creating adaptable versions” [29]. As a result, two 

optimised models (AO and HHO) were developed and 

used to extract relevant features from the extracted features 

while also adjusting the support vector machine's 

hyperparameters. Finally, two non-hybrid multiclass 

classification models (AO-SVM and HHO-SVM) were 

created to classify a number of specific skin diseases.  

 

2. LITERATURE REVIEW 

Authors in [27] create a classification model for six skin 

diseases, including “psoriasis, seborrhoeic dermatitis, 

lichen planus, pityriasis rosea, chronic dermatitis, and 

pityriasis rubra”, which were tested on Dermatology 

datasets. The dataset was acquired from the “UCI Machine 

Repository”. This dataset has 35 variables, of which 34 are 

linear and 1 is nominal. The dataset underwent data 

preprocessing procedures such as variable selection, 

cleaning, noise removal, and normalisation.  Classification 

models were developed using five “data mining techniques 

(CART, SVM, DT, RF, and GBDT)”, as well as an 

ensemble of all techniques.  The “CART, SVM, DT, RF, 

and GBDT” models achieved performance accuracy of 

94.17%, 96.93%, 93.82%, 97.27%, and 96.25%, 

respectively.  The results also show that the CART, SVM, 

DT, RF, and GBDT models achieved sensitivity 

performances of 91.12%, 90.78%, 91.13%, 91.56%, and 

92.38%, respectively.  The ensemble models had a higher 

performance accuracy of 98.64%. 

Authors in [18] developed “a convolutional neural 

network-based machine learning classification model for 

skin disease detection”. The proposed system has been 

evaluated on dermatoscopic photos from the SkinCancer-

MNIST dataset (HAM10000), which is publicly available.  

The dataset contains seven different kinds of skin ailments: 

"melanocytic nevi, melanoma, benign keratosis, basal cell 

carcinoma, actinic keratoses, vascular lesions, and 

dermatofibroma". The collected data was split into training 

and testing datasets utilising the appropriate ratio.  Several 

data preprocessing procedures were performed, including 

data cleaning (filling in missing values), data smoothing 

(identifying and/or removing outliers, noise, and 

inconsistencies), and data transformation (converting 

actual values from one representation to the target 

representation). The collected dataset was used to develop 

and train a convolutional neural network.  According to the 

results, the model achieved 93.35% performance accuracy 

at epoch-50 and 93.28% at epoch-20. 

Authors in [11] created a skin disease classification 

model using fuzzy clustering and machine learning 

techniques.  The dataset was collected from 50 hospitalised 

patients to classify skin disease into two categories: basal 

and squamous.  The collected data were pre-processed 

using a median filter to remove noise from the images. 

Fuzzy clustering was used to separate lesions from 

uninfected part of the image.  variables, of which 34 are 

linear and 1 is nominal. The dataset underwent data 

preprocessing procedures such as variable selection, 

cleaning, noise removal, and normalisation.  Classification 

models were developed using five “data mining techniques 

(CART, SVM, DT, RF, and GBDT)”, as well as an 

ensemble of all techniques.  The “CART, SVM, DT, RF, 

and GBDT” models achieved performance accuracy of 

94.17%, 96.93%, 93.82%, 97.27%, and 96.25%, 

respectively.  The results also show that the CART, SVM, 

DT, RF, and GBDT models achieved sensitivity 

performances of 91.12%, 90.78%, 91.13%, 91.56%, and 

92.38%, respectively.  The ensemble models had a higher 

performance accuracy of 98.64%. 

Authors in [18] developed “a convolutional neural 

network-based machine learning classification model for 

skin disease detection”.  The proposed system has been 

evaluated on dermatoscopic photos from the SkinCancer-

MNIST dataset (HAM10000), which is publicly available.  

The dataset contains seven different kinds of skin ailments: 

"melanocytic nevi, melanoma, benign keratosis, basal cell 

carcinoma, actinic keratoses, vascular lesions, and 

dermatofibroma". The collected data was split into training 

and testing datasets utilising the appropriate ratio.  Several 

data preprocessing procedures were performed, including 

data cleaning (filling in missing values), data smoothing 

(identifying and/or removing outliers, noise, and 

inconsistencies), and data transformation (converting 

actual values from one representation to the target 

representation). The collected dataset was used to develop 

and train a convolutional neural network.  According to the 

results, the model achieved 93.35% performance accuracy 

at epoch-50 and 93.28% at epoch-20. 

Authors in [11] created a skin disease classification 

model using fuzzy clustering and machine learning 

techniques.  The dataset was collected from 50 hospitalised 
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patients to classify skin disease into two categories: basal 

and squamous.  The collected data were pre-processed 

using a median filter to remove noise from the images. 

Fuzzy clustering was used to separate lesions from 

uninfected part of the image.  RGB was used to extract 

colour features, and SYMLET wavelet analysis was used 

to extract texture features like mean, standard deviation, 

entropy, ellipticity, intensity, and coefficient of correlation.  

The acquired data was divided into 70% for training and 

30% for testing. Classification models were created with 

the "K-Nearest Neighbour (KNN) and Support Vector 

Machine (SVM)" classifiers.  The KNN model achieved 

91.2% accuracy, exceeding the SVM's 85% accuracy. 

Authors in [3] use "machine learning and image 

processing techniques" to create classification models for 

skin diseases. The authors gathered 377 images from four 

disease categories: "acne, cherry angioma, melanoma, and 

psoriasis from the Dermnet NZ and Atlas Dermatologico 

databases".  The acquired images were pre-processed by 

first resizing to 250X250 and then applying the median 

filter to reduce noise. Furthermore, Otsu's thresholding was 

used to segment the image, texture features were extracted 

using Gabor and Entropy techniques, and edge features 

were extracted using the Sobel method. Three models 

based on "SVM, RF, and K-NN" were trained and tested 

with the acquired dataset, and the results show that SVM 

outperforms the other models in terms of the study's 

performance evaluation metrics. 

Author in [12] used a "hybrid feature-optimised 

multiclass support vector machine (MSVM)" classification 

model to create a "skin cancer" detection system. The 

dataset for this study was obtained from the freely 

available HAM10000 database, which contains 10,015 

dermatoscopic images. To reduce unwanted noise, a 

median filter (MF) is employed. The Fuzzy C-Means 

method is used to separate homogeneous clusters. 

Following feature extraction, the Grey Wolf Optimisation 

(GWO) method was used to select the optimal features. 

The "Hybrid Feature-Optimized MSVM" classifier is used 

to distinguish between cancerous and non-cancerous 

images. The "hybrid feature-optimise-MSVM" achieved 

98.0% accuracy, 97.2% specificity, and 96.2% sensitivity. 

Authors in [10] developed a deep learning-based 

classification model for predicting skin diseases. This 

study utilised the HAM-10000 Dataset, a widely used and 

publicly available dataset in dermatology research. The 

HAM-10000 Dataset contains 10,000 images of various 

skin conditions, including "nevi, melanoma, benign 

keratosis, basal cell carcinoma, actinic keratoses, vascular 

lesions, and dermatofibromas". The dataset contains 

images of varying resolutions and sizes. Images are resized 

to a standard size, typically 224x224 pixels, as part of the 

data preprocessing steps to ensure unified input sizes for 

the convolutional neural network (CNN). To ensure a fair 

assessment of the model's efficacy, the input data is split 

into three sections: training, validation, and test. The 

splitting is stratified to ensure that each set contains a 

proportional representation of various skin ailments. The 

training set trains the model, the validation set tunes 

hyperparameters and chooses models, and the test set 

assesses the model's final performance.  The outcomes 

show that the suggested approach achieves an accuracy of 

97.05%. 

Authors in [16] used the "Wolf Antlion Neural Network 

(WALNN) technique to develop a classification model for 

detecting and classifying skin diseases".  The proposed 

method classifies carcinoma of the skin using the "ISIC 

archive dataset" as input. This dataset contains 2,750 

dermoscopy images. 2000 people were employed as 

instructors, 600 for development and 150 for confirmation. 

These practical instances from each Data application for a 

general audience back up the segmentation technique. The 

photos in the classification challenge are divided into three 

categories: "nevi, seborrhoeic keratosis, and melanoma 

(1372, 254, and 374)". During pre-processing stage, "a 

wavelet denoising, bilateral filtering, and histogram 

equalisation" were used to remove noise, improve edges, 

and increase contrast. Following that, an improved 

thresholding approach is used for segmentation, and the 

Grey Level Co-occurrence Matrix is used to extract texture 

features like contrast, mean, energy, and homogeneity.   

Finally, a classification model based on the Wolf AntLion 

Neural Network (WALNN) is used to identify cancerous 

skin lesions. The results show that the WALNN model 

achieved 98.34% specificity, 99.12% sensitivity, 98.98% 

precision, and 99.01% accuracy. 

Authors in [13] developed a skin illness classification 

framework using "sophisticated image processing 

techniques and an attention-based vision approach to assist 

dermatologists in solving classification problems". The 

dataset is first collected, and then the images are subjected 

to a variety of preprocessing techniques, including 

"adaptive histogram equalisation (AHI), binary cross-

entropy with implicit averaging (BCEI), gamma correction, 

and contrast stretching". The pre-processed images are 

subsequently fed into a deep-learning framework built 

around vision transformers (ViT). The enhanced images 

are then classified using an attention-based approach that 

relies on the encoder part of the transformers and multi-

head attention. Extensive experimentation is conducted to 

collect various results from two publicly available datasets, 

confirming the robustness of the proposed approach. The 

suggested method performs competitively on two freely 

accessible datasets in comparison to a cutting-edge 

approach. 

Authors in [8] proposes a "Hybrid Deep Transfer 

Learning Method (HDTLM) that combines DenseNet121 

and EfficientNetB0" to improve dermatological illness 

prediction. The suggested hybrid approach leverages 

"DenseNet121's" dense connectivity to capture intricate 

patterns, as well as "EfficientNetB0's "computational 

efficiency and scalability. To train and validate, a dataset 

of 19,171 images representing 19 skin conditions was used. 

Accuracy, precision, recall, and F1-score were among the 

performance metrics used to evaluate the model. A 

comparison was also made with cutting-edge models such 

as "DenseNet121, EfficientNetB0, VGG19, MobileNetV2, 

and AlexNet". The suggested HDTLM achieved a 
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precision of 0.95, recall of 0.96, F1-score of 0.95, and 

overall accuracy of 98.18%, consistently outperforming 

baseline models. The findings indicate that the hybrid 

model has a better ability to generalise across multiple skin 

disease categories.  

 

3. METHODOLOGY 

This system's algorithms include image resizing, RGB 

to grayscale image conversion, bi-histogram equalisation, 

a Black-Hat transformation and inpainting algorithm to 

remove digital hair, adaptive median filtering, Sobel 

operator, GLCM algorithm, AO-SVM classification model 

and HHO-SVM classification model, all designed using 

MATLAB software. Figures 1 and 2 show a block diagram 

of the proposed classification model's methodology, as 

well as a flowchart for the trained and tested skin image 

datasets using AO-SVM or HHO-SVM.  

 

3.1 Image Acquisition 

Two thousand seven hundred images of skin comprise 

eight different skin diseases and normal skin taken from 

the Kaggle village collection. An equal number of datasets 

from the original dataset were randomly selected for each 

of the diseased datasets to prevent an unbalanced dataset 

for class labelling. The dataset is divided into nine 

categories: seven hundred (700) normal skin, two hundred 

and fifty (250) each for granuloma annulare (GRA), 

haemangioma (HEM), herpes (HEP), hidradenitis 

suppurativa (HSP), keratocanthoma (KEC), lupus (LUP), 

sebaceous hyperplasia (SEH), and sun damaged skin 

(SDS). Figure 3 depicts a sample of each class of diseased 

datasets and normal skin datasets. 

 

3.2 Image Preprocessing and Segmentation 

During the preprocessing phase, the RGB images were 

resized using MATLAB's image resize toolbox to remove 

unnecessary pixel information and improve the 

classification model efficiency. Bi-histogram equalisation 

was used to improve contrast, and RGB images were 

converted to greyscale. A Black-Hat transformation and an 

inpainting algorithm were used to remove digital hair. The 

images were then denoised using the adaptive median 

filtering method prior to image segmentation processing.  

To achieve the necessary segregation, the proposed model 

divides the affected and unaffected regions of a leaf using 

the Sobel edge detection algorithm.  

 

3.3 Feature Extraction 

Following the segmentation procedure, the three 

features of colour, shape, and texture were extracted. To 

extract shape and texture features, the Gray-Level Spatial 

Dependence Matrix was used, while colour features were 

extracted using the Colour Moment. The four colour 

moments extracted were medium, standard deviation, 

asymmetry, and kurtosis. The Haralick model was used to 

extract five texture attributes: energy, contrast, 

homogeneity, correlation, and entropy.  Six shape features 

were identified: eccentricity, area, solidity, rectangularity, 

equidimeter, and perimeter.  To fuse all three features, the 

linear combination method was used. 

 

3.4 Formulation of Aquila Optimiser (AO) and Harris 

Hawk Optimiser (HHO) Models 

Algorithms 1 and 2 are used to formulate the model for 

AO and HHO used in this study. 

 

Algorithm 1: Aquila Optimiser Model 

 

Algorithm 1: Pseudocode of Aquila Optimiser (AO) 

Input: size of population (N), maximum number of 

iterations (Q) 

Initialisation phase: 

Initialise the Aquila Optimizer's parameters (i.e., S, q, Q, K, 

α, β, V, g, h, S1, r1, ,  and ). 

Outputs: Solution to the problem 

 WHILE (end condition is not 

encountered) do 

Evaluate the objective function 

values. 

CBe(q)= Determine the most optimal obtained solution 

based on the objective values. 

 for (i = 1,2…, N) do 

 Revise the current solution's mean value 

CMe(q). 

 Revise the x, y, P1, P2, LV(DI), 

UF(q), CME, μ 

(  Then 

½ 

 

Step 1: Expanded Exploration (C1) 

The existing solution can be revised using Equations (1) 

and (2)  

 

    (1) 

 

where  indicates the outcome of the subsequent 

iteration at time q, CBe (q) is the optimal solution generated 

by the algorithm through repetition q. It depicts the 

estimated target spot.  The rmd is an arbitrary integer 

within range of zero and one; q and Q represent the present 

and ultimate number of repetitions, respectively. The term 

 is used to control the number of instances in the 

expanded search (exploration) and CMe (q) represent the 

mean spot of the present solution within qth repetition, 

which is expressed in Equation (2). 

 

     (2) 

 

where N is the number of possible solutions and S is the 

problem's dimension size (population size). 

 

if Objective (C1(q+1)) < Objective (C(q)) then 

C(q) =(C1(q+1)) 

 if Objective (C1(q+1)) < Objective 

(CBe(q)) then 
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CBe(q) =C1(q+1) 

endif 

endif 

else 

 

Step 2: Narrowed Exploration (C2) 

The present solution can be updated by using Equation 

(3). 

 

    (3) 

 

where CR (q) is a generic solution in the range [1, N] at the 

ith iteration as in [1].    indicates the outcome for 

the subsequent iteration at time q. LV (DI) is 

mathematically expressed in Equation (4).  Equations (6), 

(7), (8), (9) and (10) can be used to compute both y and x, 

which model the spiral flight trajectory in the search.  

 

        (4) 

 

where K is a constant value of 0.01, g and h are arbitrary 

numbers that vary from 0 to 1,  is a constant value of 1.5, 

 and is determined by employing Equation (5). 

 

          (5) 

 

        (6) 

 

        (7) 

 

where  and  can be determined using Equations (8), 

(9) and (10). 

 

        (8) 

 

        (9) 

 

       (10) 

 

where  refers to an integer indicating the search 

cycles between 1 and 20 as in [36], V is a modest value, 

fixed at 0.00565,  equal to 0.005, and  denotes the 

random integer from the range of 1 to the dimensions as in 

[1]. 

 

if Objective (C2(q+1)) < Objective (C(q)) then 

C(q) =(C2(q+1)) 

if Objective (C2(q+1)) 

< Objective (CBe(q)) then 

CBe(q) =C2(q+1) 

endif 

endif 

endif 

else 

½ 

 

Step 3: Expanded Exploitation (C3) 

The present solution can be updated by using Equation 

(11). 

 

    (11) 

 

where  indicates the outcome for the subsequent 

iteration at time q,  indicates the mean position in 

the ith generation,  is the best Aquila position 

obtained in this iteration, rmd is an arbitrary generated 

number within range of [0, 1],  and  are valuable 

utilisation adjustment parameters set at a fixed value of 0.1 

used to control exploitation search space, and upp and low 

refer to the upper and lower boundaries as in [1]. 

 

 if Objective (C3(q+1)) < Objective 

(C(q)) then  

C(q) =(C3(q+1)) 

if Objective (C3(q+1)) 

< Objective (CBe(q)) 

then 

CBe(q) =C3(q+1) 

endif 

endif 

else 

 

Step 4: Narrowed Exploitation (C4) 

Reverse the current solution using Equations (12), (13), 

(14), and (15). 

 

     (12) 

 

    (13) 

 

    (14) 

 

    (15) 

 

where  indicates the subsequent iteration's 

outcome at time q, UF. represents a quality function that 

helps to stablise search strategies. stands for the various 

initiatives of the Aquila optimiser when monitoring target 

during elusion. is a value that drops from 2 to 0, 

indicating the gradient of the flight utilised by the Aquila 

optimiser to monitor target during elusion from the first to 

the last position.  is the present outcome in the qth 

iteration, according to authors in [1] and LV (DI) 

represents the Levy flight distribution function. 

 

if Objective (C2(q+1)) < Objective (C(q)) 

then 

C(q) =(C2(q+1)) 

if Objective (C2(q+1)) 

< Objective (CBe(q)) then 

CBe(q) =C2(q+1) 

endif 

endif 
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endif 

endif 

endfor 

endwhile 

Return Optimal solution (CBe) 
 

 

ALGORITHM 2: PSEUDOCODE OF HARRIS HAWK 

OPTIMISATION (HHO) 

 

Input: size of population (N), maximum number of 

iterations (Q) 

Initialisation phase: 

 Initialise the parameters of the Harris 

Hawk Optimizer (i.e., DI, q, Q, ρ, VI, SE, υ, low, 

upp, and t). 

Initialise Hi i=1, 2, …, M 

Outputs: Outcome to the problem 

   While (q < Q) do 

 

Determine the objective function values for every hawk, 

Hi. Identify the prime instance (target position) 

Check if it is beyond bounds. 

 For every hawk (Hi) 

 

Execute Transition from Exploration Phase to 

Exploitation Phase 

Reverse the convergence factor with Equation (16) as in 

[9]. 

 

      (16) 

 

where ES is the convergence factor, q is the present 

repetition number, Q is the ultimate repetition number, and 

 stand for initial energy of the target which can be 

expressed mathematically using Equation (17). 

 

Reverse the initial energy of target using Equation (17). 

 

     (17) 

 

Calculate the exploration range of the target with 

Equation (18). 

 

      (18) 

 

J represents the random jump strength of the target and 

is an equally distributed random number in (0,1), If 

(|ES| ≥ 1) then 

 

Execute Exploration Phase 

Update hawk position using Equation (19) as in [9]. 

 

   (19) 

 

where rmd1, rmd2, rmd3, rmd4, and t are stochastic value 

within the range [0,1]. A hawk spot at the current iteration 

and subsequent iterations are denoted by H(q) and H(q+1), 

respectively.  and  stand for optimal 

spot and stochastically selected hawk spot, respectively.  

 stands for mean value of the spots in the present 

candidate solution calculated with Equation (20) as in [9]. 

 

    (20) 

 

where M is the population size 

Endif 

Elseif (|ES| < 1) then 

 If (rmd ≥½ and |ES|≥½) 

 

Execute Soft Besiege to Siege the Prey 

Update hawk position using Equation (21). 

 

     (21) 

 

 

where  stands for the location difference between 

the present location of the target and the present location, 

 stands the location of the prey, and  is the 

present location. 

Endif 

 If (rmd ≥½ and |ES|<½) 

 

Execute Hard Besiege to Siege the Prey 

Update hawk position using Equation (22). 

 

     (22) 

 

Endif 

 If (rmd <½ and |ES|≥½) 

 

Execute Soft Besiege with Progressive Rapid Dives to 

Siege the Prey 

Update hawk position using Equations (23), (24), (25), 

(26), and (27). 

 

    (23) 

 

       (24) 

 

where  is the magnitude to resolve the issue,  is an 

arbitrary vector whose dimension is   and  is the 

levy flight function defined as in Equation (25). 

 

       (25) 

       (26) 

 

where ,  (0,1),  is a constant of 1.5 as in [9]. 

 

     (27) 
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where A and B is the next position for the new iteration 

Endif 

 If (rmd <½ and |ES|<½) 

 

Execute Hard Besiege with Progressive Rapid Dives to 

Siege the Prey 

Update hawk position using Equations (28), (29), and 

(30). 

 

    (28) 

 

        (29) 

 

     (30) 

 

   Endif 

    Endif 

     Endfor 

     

 Q=q+1 

      

 End while 

Output the best solution  and its fitness value 
 

3.4 Formulation of Aquila Optimiser Model and Harris 

Hawk Optimiser Model for Optimising Support Vector 

Machine Parameters 

Algorithms 3 and 4 were used to formulate the model 

for AO for the optimisation of support vector machine 

parameters and HHO for the optimisation of support vector 

machine parameters in this study. 
 

Algorithm 3: AO Model for Optimizing SVM 

Parameters 

1: Input: The datasets, which include both the train 

and test datasets 

2: Subset the training and testing datasets using 10-

fold cross-validation. 

3: Setting the AO parameters and particle 

initialisation: Create the first particles with the 

feature mask C and ϒ combined.  As in 

Algorithm 1, set the AO parameters that include 

the low and upp represent lower and upper bound 

of the problem, M represent total number of 

potential solutions, s represent population size, q 

and Q represents both initial and maximum 

iterations, rmd random value range between 0 and 

1, V small value assigned with 0.00565, α 

unchangeable value assigned with 0.01, ω fixed 

value at 0.005 and π at 3.142. 

4: Set the iteration count to v + 1. 

5: while (v < V) do 

6: Use the chosen feature subset to train the SVM  

model 

a) Preprocessing of training sets: choose input 

features for training datasets based on the 

feature mask that is shown in a particle's first 

part. 

b) SVM classifier accuracy calculation: 

considering (C, γ) that is depicted in the 

subsequent and third base components of a 

particle, use Equation (31) to get the average 

classification accuracy (CLA).  

 

  (31) 

 

where the ACL and NACL, respectively, represent 

how many instances were accurately and 

inaccurately classified by the SVM classifier. 

 

(c)  Regarding the (C, γ) and the entire training 

set Tr, the trained model's classification 

accuracy can be evaluated using Equation 

(31). 

7: Apply Equation (32) to evaluate the Fitness 

Function (FitFuc) as defined by authors in [4]. 

 

    (32) 

 

8: Set up potential solutions by utilising Equation 

(33). 

 

            (33) 

 

where rdm stand for arbitrary number, lowj and 

uppj stand for the jth minimum bound and jth 

maximum bound of the given problem, 

respectively. M is the aggregate of feasible 

outcomes and S represents the number of 

instances 

9: for v = 1 to V do 

10: To update potential solutions , use Equations 

(1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), 

(12), (13), (14), and (15) 

11: Assess the Fitness Function (FitFuc) of the 

updated potential solutions using Equation (32)  

12: end for 

13: Training and Testing the SVM classifier 

 End while 

14: Proceed to step 15 if the stopping criteria are met 

(i.e., v > V); if not, proceed to step 3. 

15: Output: Obtain the optimal value for C and γ from 

the optimal solution 
 

Algorithm 4: HHO Model for Optimizing SVM 

Parameters 

1: Input: The datasets, which include both the train 

and test datasets 

2: Subset the training and testing datasets using 10-

fold cross-validation. 

3: Setting the HHO parameters and particle 

initialisation: Create the first particles with the 

feature mask C and ϒ combined.  As in 

Algorithm 2, set the HHO parameters, which 

include the rmd, the random number range from 0 

to 1,  and VI fixed number range from 0 to 1,  
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constant value at 1.5, upp and loo represent lower 

and upper bound of the problem, o represents 

fixed value range from 0 to 1, and σ represents 

position deviation of the dung beetle at fixed 

value of -1 or 1, the iteration v=0, 

4: Set the iteration count to v + 1. 

5: while (v < V) do 

6: Use the chosen feature subset to train the SVM 

model 

a. Preprocessing of training sets: choose 

input features for training datasets  

based on the feature mask that is shown 

in a particle's first part. 

b. SVM classifier accuracy calculation: 

considering (C, γ) that is depicted in the 

subsequent and third base components of 

a particle, use Equation (31) to get the 

average classification accuracy (CLA). 

c. Regarding the (C, γ) and the entire 

training set Tr, the trained model's 

classification accuracy can be evaluated 

using Equation (31). 

7: Apply Equation (32) to evaluate the Fitness 

Function (FitFuc) as defined by authors in [4]. 

8: for v = 1 to V do 

9: To update potential solutions C(q), use Equations 

(16), (17), (18), (19), (20), (21), (22), (23), (24), 

(25), (26), (27), (28), (29), and (30)  

10: Assess the Fitness Function (FitFuc) of the 

updated potential solutions using Equation (32) 

11: end for 

12: Training and Testing the SVM classifier 

 End while 

13: Proceed to step 14 if the stopping criteria are met 

(i.e., v > V); if not, proceed to  

step 3. 

14: Output: Obtain the optimal value for C and γ from 

the optimal solution 

 

Figure 1: A block diagram of the developing skin diseases classification models
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Figure 2: Flowchart showing trained and tested skin images datasets with AO-SVM and HHO-SVM classification 

model  
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Figure 3: Sample of each class of diseased datasets and normal skin datasets 

 

3.5 Classification of Skin Diseases using Multiclass 

Classification Models (AO-SVM and HHO-SVM) 

Selected disease segment images from the skin 

classified using classification models in connection with a 

Directed Acyclic Graph Support Vector Machine 

(DAGSVM), which can classify more than two data 

classes. Multiclass SVM is reduced to a two-class 

classification problem in this research. In the study, the 

training dataset, SE = (ga; hb)t
 b=1, where the class label is 

haϵ {0,1}and the feature vector is ga ϵ Rn. The linear 

classifier creates a decision function (df) using Equation 

(34). 

df (g) = veck g +e       (34) 
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where e is the bias and vec = (vec1, vec2…, vecn) is the 

weight vector.  If df (g)> 0, the prediction label is +1; if not, 

it is -1.  The convex optimisation problem with maximal 

margin 2/||vec||2 and minimal training errors is represented 

by Equation (35), which the created standard Support 

Vector Machine (SVM) solved through the identification 

of a region of space df (g) = 0 between two classes. 









+ 

= = 

n
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a hu
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, 2

1
min 
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                (35) 

 

Subject to the constraints 
u

bubuhbbha eGVeceGvec −+++ 2       (36) 

for               

and, 

0u

b    for  kb ,...,1=    (37) 

where  Xhb ....,,1  the multiclass labels of the data 

vectors and   \,....,1 Xu bh the multiclass labels 

excluding bh  are allowed by   the training error loss 

function for possibly non-linearly separable data. The 

specified parameter C controls the amount of 

misclassification on the training set of data by balancing 

the margin and losses.  

  

Authors in [35] discovered that a large C corresponds to 

giving the errors a higher penalty, which lowers the margin, 

while a small C allows for more errors and increases the 

margin.  In this study, K = 8 movements were categorised 

using the DAG method.  There is a total of K (K-1)/2 

binary classifiers, or 28 binary classifiers for skin-related 

diseases, that are involved in this classification process.  In 

the training phase, one binary classifier is assigned to each 

pair of movements. The soft margin strategy is necessary 

to keep the classes apart because there is a chance that the 

data for the two distinct classes will overlap during each 

binary classifier's training. However, the training step 

involves using inequality constraints to solve the quadratic 

optimisation problem given in Equation (35) to train 28 

different binary classifiers for the classification of skin 

diseases in the dataset. The constant C's value and the 

kernel value were utilised for mapping the input feedback. 

 

Optimisation Problem Formulation of AO-SVM 

The AO algorithm searches for the best combination of 

SVM hyperparameters as shown in Equation (38). 

 

                 (38) 

where C is regularization parameter, γ is the kernel 

coefficient (for RBF kernel), ρ is loss (or fitness function), 

and Accuracycv   is classification accuracy via cross-

validation.  

  

Each candidate solution (search agent) is a vector of 

hyperparameters as shown in Equation (39). 

 

Xi=[Ci,γi]                       (39) 

 

Each candidate solution is evaluated using an SVM 

model, trained with the parameters from AO.  A 10-fold 

cross-validation is typically used to measure the 

generailisation ability represented by Equation (40). 

 

Fitness-1-mean                      (40) 

Optimization Problem Formulation of HHO-SVM 
The HHO algorithm searches for the best combination 

of SVM hyperparameters represented by Equation (41). 

 

       (41) 

Each candidate solution (search agent) is a vector of 

hyperparameters shown in Equation (42). 

 

Xi= [Ci,γ, f1, f2,….,fd]                (42) 

 

fj ϵ {0,1}: binary indicator for selecting the jth feature 

d: total number of features 

 

Search Process 

1. Initialise population: Randomly generate N sets of 

[C,γ] 

2. Evaluate fitness: For each, train SVM and 

compute CV accuracy 

3. Update population: Using AO or HHO strategy 

4. Select best: Keep the best solution found so far 

5. Iterate: Repeat for a number of iterations or until 

convergence 

 

4. RESULTS AND DISCUSSION 

Table 1 shows performance measures of the 

experimental outcomes of the proposed models, while 

Table 2 compares their performance measures to that of 

existing classification models. 

 

4.1 Performance Evaluation Metrics of the Developed 

Classification Models (AO-SVM and HHO-SVM)   

The AO-SVM model achieved FPR performance of 

2.86, 3.14, 3.57, 2.57, 2.71, 3.00, 2.57, and 3.29% and the 

HHO-SVM model achieved FPR performance of 2.43, 

2.71, 3.14, 2.14, 2.29, 2.57, 2.14%, and 2.86 on the 

diseased dataset for each class comprising GRA, HEM, 

HEP, HSP, KEC, LUP, SEH, and SDS, respectively. Also, 

the AO-SVM model achieved specificity performance of 

97.14, 96.86, 96.43, 97.43, 97.29, 97.00, 97.43, and 

96.71% and the HHO-SVM model achieved specificity 

performance of 97.57, 97.29, 96.86, 97.86, 97.71, 97.43, 

97.86, and 97.14% for each class comprising GRA, HEM, 

HEP, HSP, KEC, LUP, SEH, and SDS, respectively. More 

so, the AO-SVM model achieved sensitivity performance 

of 92.80, 91.60, 90.40, 93.20, 94.00, 92.00, 93.20, and 
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91.20% and the HHO-SVM model achieved sensitivity of 

94.00, 92.80, 91.60, 94.40, 95.20, 92.80, 94.40, and 

92.40% on the diseased dataset for each class GRA, HEM, 

HEP, HSP, KEC, LUP, SEH, and SDS, respectively. 

Furthermore, the AO-SVM model achieved precision 

performance of 92.06, 91.24, 90.04, 92.83, 92.52, 91.63, 

92.83, and 90.84% and HHO-SVM model achieved 

precision performance of 93.25, 92.43, 91.24, 94.02, 93.70, 

92.80, 94.02, and 92.03% on the diseased dataset for each 

class comprising GRA, HEM, HEP, HSP, KEC, LUP, 

SEH, and SDS, respectively. Finally, the AO-SVM model 

achieved performance accuracy of 96.00, 95.47, 94.84, 

96.32, 96.42, 95.68, 96.32, and 95.26% and HHO-SVM 

model achieved performance accuracy of 96.63, 96.10, 

95.47, 96.95, 97.05, 96.21, 96.94, and 95.89% on the 

diseased dataset for each class comprising GRA, HEM, 

HEP, HSP, KEC, LUP, SEH, and SDS, respectively shown 

in Table 1. 

The results in Table 1 show that the HHO-SVM 

multiclass classification model outperforms the AO-SVM 

multiclass classification model in all performance metrics. 

However, HHO model is very strong in exploitation search 

behaviour but very weak in exploration search behaviour 

whereas, AO model is very week in exploitation search 

behaviour but very strong in exploration search behaviour. 

The “No Free Lunch (NFL) theorem states that an 

algorithm’s performance on one problem category does not 

assurance its performance on other categories” [30]. As a 

result, the effectiveness and superiority of HHO-SVM 

across AO-SVM in this study is heuristic. Nonetheless, "it 

is clear that the efficacy of any type of algorithm, 

including a nature-inspired optimisation algorithm (NIOA), 

is profoundly influenced by the algorithm's design 

viewpoint, such as optimal mixing of exploration and 

exploitation" [21]. 

 

4.2 Performance Evaluation Metrics Comparison of the 

Developed Classification Models with the Existing 

Classification Models in Skin Diseases Classification   

This study's findings are consistent with previous 

research on skin disease detection and classification 

algorithms. Table 2 compares the results of the suggested 

classification models to other developed multiclass support 

vector machine classification models and currently 

available classification models. This study, however, bears 

similarities to studies conducted by [22] that optimise 

support vector machine with fruit fly optimisation (FSO-

SVM) and [16] that optimise neural network with Wolf 

antlion optimiser (WALNN). Regarding the performance 

evaluation metrics used, as shown in Table 2, the 

developed models (AO-SVM and HHO-SVM) 

outperformed some of the existing models. 

In light of the experiment's outcomes, the developed 

multiclass classification models (AO-SVM) and (HHO-

SVM) is more sensitive, specific, and accurate. 

Furthermore, the correctness of the (AO-SVM) and (HHO-

SVM) models are further validated by their false positive 

rate result. The two models thus offered improved 

specificity, sensitivity, accuracy, and precision along with 

a reduction in calculation time and false positive rate. The 

performance evaluation results of the (AO-SVM and 

HHO-SVM) models are thus comparable to those of the 

other existing conventional infected skin diseased 

classification models.  

 

Table 1: Performance evaluation metrics of the developed multiclass support vector machine classification models on 

skin datasets 

 All Diseased 

Datasets 
GRA HEM HEP HSP KEC LUP SEH SDS AVE 

False Positive Rate (FPR) (%) 

AO-SVM 4.57 2.86 3.14 3.57 2.57 2.71 3.00 2.57 3.29 3.14 

HHO-SVM 4.14 2.43 2.71 3.14 2.14 2.29 2.57 2.14 2.86 2.71 

Specificity (%) 

AO-SVM 95.43 97.14 96.86 96.43 97.43 97.29 97.00 97.43 96.71 96.86 

HHO-SVM 95.86 97.57 97.29 96.86 97.86 97.71 97.43 97.86 97.14 97.29 

Sensitivity (%) 

AO-SVM 98.30 92.80 91.60 90.40 93.20 94.00 92.00 93.20 91.20 92.97 

HHO-SVM 98.45 94.00 92.80 91.60 94.40 95.20 92.80 94.40 92.40 94.01 

Precision (%) 

AO-SVM 98.40 92.06 91.24 90.04 92.83 92.52 91.63 92.83 90.84 92.49 

HHO-SVM 98.55 93.25 92.43 91.24 94.02 93.70 92.80 94.02 92.03 93.56 

Accuracy (%) 

AO-SVM 97.56 96.00 95.47 94.84 96.32 96.42 95.68 96.32 95.26 95.99 

HHO-SVM 97.78 96.63 96.10 95.47 96.95 97.05 96.21 96.94 95.89 96.56 

Note: Granuloma Annulare (GRA), Hemangioma (HEM), Herpes (HEP), Hidradenitis Suppurativa (HSP), 

Keratocanthoma (KEC), Lupus (LUP), Sebaceous Hyperplasia (SEH), Sun Damaged Skin (SDS), Average (AVE), 

Aquila Optimiser-Support Vector Machine (AO-SVM), Harris Hawk Optimiser-Support Vector Machine (HHO-SVM 
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Table 2: Performance evaluation metrics comparison of developed classification models with the existing classification 

models in skin disease classification 

Author(s) and Models 
False Positive 

Rate (%) 

Specificity 

(%) 

Sensitivity 

(%) 

Precision 

(%) 

Accuracy 

(%) 

[2] 

“Support Vector Machine (SVM)” - - 97.57 97.71 97.00 

‘K-Nearest Neighbour (KNN)” - - 95.57 95.71 95.00 

“Decision Tree (DT)” - - 95.14 95.14 95.00 

[32] 

“Random Forest (RF)” - - 94.00 94.00 87.00 

“Decision Tree (DT)” - - 74.00 75.00 68.00 

“Logistic Regression (LR)” - - 55.00 56.00 58.00 

“Support Vector Machine (SVM)” - - 50.00 54.00 53.00 

“K-Nearest Neighbour (KNN)” - - 50.00 54.00 48.00 

[3] 

“Support Vector Machine (SVM)” - - 90.80 91.00 90.70 

“Random Forest (RF)” - - 84.20 84.80 84.20 

“K-Nearest Neighbour (KNN)” - - 67.10 72.80 67.10 

[12] 

“Hybrid Features Optimised MSVM” - 97.26 96.20 - 98.00 

[22] 

“Fruit Fly Optimization-Support 

Vector Machine (FOA-SVM)” 
- 96.00 98.50 - 98.80 

[16] 

“Wolf AntLion Neural Network 

(WALNN)” 
- 98.34 99.12 98.98 99.01 

Developed Models 

AO-SVM 3.14 96.86 92.97 92.49 95.99 

HHO-SVM 2.71 97.29 94.01 93.56 96.56 

Note: Histogram Oriented Gradient (HOG), Aquila Optimiser-Support Vector Machine (AO-SVM), Harris Hawk 

Optimiser-Support Vector Machine (HHO-SVM) 

 

5. CONCLUSION 

Skin disease has been the most common health problem 

facing many countries and varies accordingly from 

symptom and severity.  Skin disease may be permanent, 

temporary, painful or painless based on the affected 

disease. However, many skin diseases are life-threatening, 

which need prompt and continuous monitoring to provide 

proper treatment and ensure faster recovery must be 

diagnosed and treated early to avoid severe consequences. 

This study uses clinical and histopathological attributes to 

classify ESD, such as Granuloma Annulare, Hemangioma, 

Herpes, Hidradenitis Suppurativa, Keratocanthoma, Lupus, 

Sebaceous Hyperplasia, and Sun Damaged. We created 

two non-hybridized models (AO and HHO) to fine-tune 

the support vector machine's hyperparameters.  The 

research project was carried out in several stages, 

beginning with dataset collection from the Kaggle.com, 

followed by data preprocessing and segmentation, and 

finally feature extraction. The classification was done, and 

the effectiveness of the techniques was evaluated using 

False Positive Rate (FPR), specificity, sensitivity, 

precision and accuracy. Based on the findings, the base 

models achieved different accuracies in classifying the 8 

different skin diseases, and HHO-SVM achieved the 

highest performance accuracy with 96.56% compared to 

AO-SVM with 95.99%.  As a result, the developed models 

were highly effective at identifying and categorising 

common dermatological conditions. Such models, when 

combined with technology such as telemedicine, can be 

extremely beneficial in assisting people living in sparsely 

populated areas with limited access to specialised 

dermatological care in detecting disease early and then 

taking timely measures to cure the disease and prevent the 

spread of communicable skin disease.  
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