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Abstract: Disruptions in heartbeat patterns have been identified 

as a critical health concern globally, often leading to serious 

health risks and death. Due to the subtle and infrequent nature of 

these irregularities, individuals may overlook early warning signs, 

highlighting the need for continuous monitoring and early 

detection systems. Traditional methods for detecting heartbeat 

abnormalities, while contributing significantly in the past, are 

often labour-intensive and lack the precision required for timely 

intervention. Recent advancements, particularly in wearable 

electrocardiogram (ECG) devices and machine learning (ML), 

have changed the narrative in how heartbeat data is collected and 

analysed. Despite the progress, existing ML models often fall short 

in accounting for inter-patient variability, which is essential for 

reliable anomaly detection across diverse populations. In 

addressing the limitation, this paper proposes Long Short-Term 

Memory implementation of Autoencoder (LSTM-AE) enhanced 

with Stratified Normalisation (SN), called LAESN. The LAESN 

model is designed to improve sensitivity to individual patient 

differences in ECG signals. The LAESN was trained and evaluated 

on the ECG5000 dataset using the ‘tanh’ activation function, a 

batch size of 32, and 50 epochs. It achieved an F1 score and AUC 

of 0.9660 and 0.9952, respectively, surpassing both the baseline 

AE and other state-of-the-art models. These results highlight the 

effectiveness of SN in strengthening the ECG anomaly detection 

model, enabling it to capture subtle variations in heartbeat signals 

and support a patient-centric anomaly detection system.  

 
Keywords: Anomalies detection, arrhythmia, electrocardiogram, 

heartbeat, stratified normalization. 

 

1. INTRODUCTION 

Heartbeat analysis has been widely studied in healthcare 

analytics because of the important role it plays in good 

health and well-being. The human heart is a vital organ in 

the circulatory system that functions as a muscular pump 

responsible for delivering oxygenated blood and essential 

nutrients to tissues throughout the body [1]. An area of 

interest in understanding heart functionality is called 

arrhythmia, which often times experiences dangerous 

irregularities in its rhythm. These irregularities, whether in 

the form of bradycardia, premature contractions, or 

tachycardia, pose serious health risks [2, 3]. The disruptions 

in heart rhythm often led to cardiovascular disorders (CVD), 

which are a major cause of global mortality. In 2019, for 

instance, CVD was reported causing an approximately 18 

million deaths globally [4] and 23.6 million deaths may 

arise by 2030, highlighting the critical need for early 

detection systems to help mitigate such fatalities. Over the 

period of time, traditional methods of analysis of heartbeat 

to detect abnormality are quite cumbersome and inaccurate. 

Moreover, advances in technology, particularly wearable 

Electrocardiogram (ECG) devices, have transformed how 

heartbeat data is collected and analysed. Unlike traditional 

methods, these wearable ECGs offer precise, real-time 

digital data collection, allowing for more accurate 

interpretation and enabling personalized treatments [5]. 

Over the past decade, many of the heartbeat ECG 

analysis are approached using Machine Learning (ML) 

techniques, of which classifying heartbeat into different 

classes is more prevalent. Researchers have employed 

numerous ML classifiers for heartbeat classification, 

exploring various ML techniques, including Decision Trees 

(DT), Random Forest (RF) and Gradient-Boosted Trees 

(GBDT) [6]. Deep Learning (DL) models like 

Convolutional Neural Networks (CNN) [4, 7], have also 

shown promising results in ECG prediction. Additionally, 

unsupervised approaches, including Autoencoders (AE) [8] 

and hybrid models, have advanced the field of anomaly 

detection [9]. However, Anomaly Detection (AD) has 

emerged as a critical area in ML, gaining considerable 

research attention due to its essential role in modern 

applications like financial risk management, fraud detection, 

network security, and healthcare analytics [10]. With the 

https://doi.org/10.53982/ajeas.2025.0301.11-j
mailto:estjohnson@fedpolel.edu.ng
mailto:felix.aranuwa@aaua.edu.ng
mailto:e.oyekanmi@achievers.edu.ng
mailto:estjohnson@fedpolel.edu.ng


 
Stratified Normalization Technique with Long Short-Term Memory-Based Autoencoder for Anomaly Detection in 

Heartbeat ECG Data 
Johnson et al1 

https://doi.org/10.53982/ajeas.2025.0301.11-j    124 

 

 

 

rapid growth of wearable devices [11], AD has become 

significant where the detection of deviation from normal 

patterns is crucial for monitoring cardiac health [11]. 

Unlike classification, AD focuses on identifying 

abnormal heart rhythms relative to the normal baseline. AE 

[8], particularly when combined with LSTM networks [12, 

13], have shown success in this task by addressing long-

term dependencies, a challenge inherent in Recurrent 

Neural Networks (RNNs) [14]. Despite these advances, 

automatic detection of anomalies in heartbeat ECG data 

remains difficult because of inherent variability in ECG 

waveform morphology and individual patient differences 

[15]. This variability arises from multiple factors, including 

physiological differences, emotional states, and even 

momentary fluctuations in heart rate patterns patient [5]. 

Specifically, variations in key ECG intervals such as RR and 

QRS, as well as segments like PR and ST, often reflect 

unique physiological processes in each patient [5]. These 

variations make it difficult for traditional AD systems to 

distinguish between normal physiological deviations and 

actual outliers that signal abnormal heart conditions. 

Detecting anomalies in ECG data, therefore, requires ML 

model capable of capturing subtle, patient-specific 

irregularities without misclassifying them as noise. In 

addition, past AD studies are lacking in adequately 

accounting for the statistical variability of ECG features [12, 

16].  

This paper, therefore, proposes an AD of ECG heartbeat 

data, leveraging an LSTM-based AE architecture, enhanced 

with Stratified Normalization (SN). The proposed model, 

termed Long Short-Term Memory-Autoencoder embedding 

Stratified Normalization LAESN model was evaluated 

using ECG 5000. The results indicate that LAESN 

demonstrated strong performance, effectively reusing 

learned features and significantly improving AD accuracy. 

Addressing the existing challenges, the following are 

contributions of the paper: 

i. A novel model for improving on the inter-patient 

variability of the heartbeat ECG. 

ii. A robust framework for detecting cardiac 

anomalies by adapting to patient data through the 

use of SN, while improving model performance. 

The rest of the paper is presented in the following 

sections below. 

 

2. LITERATURE REVIEW 

The human heart is an essential organ in the human, 

regulating the delivering oxygenated blood and essential 

nutrients to tissues throughout the body [1]. The heart (see 

appendix I (a)), is muscular consisting of four compartments 

that works in unison. The upper compartment, the left-and-

right atria, which receive blood into the heart and channel it 

to the lower compartment, the left and right ventricles, via a 

series of valves. The right-side of the heart contains 

deoxygenated blood, while the left side circulates 

oxygenated blood received from the lungs. 

The chambers cooperate to sustain the cardiac cycle 

performing a sequence of mechanical actions from one 

heartbeat to the next. The cycle consists of two primary 

phases: diastole, during which the heart relaxes to fill with 

blood, and systole, denoting the heart’s contraction in 

pumping blood to the rest of the body. During these phases, 

atrial and ventricular volume and pressure exhibit rhythmic 

fluctuations (see appendix I (b)). 

ECG recordings are obtained in various formats. 

Meanwhile, the standard 12-lead ECG placeable on the 

human body is commonly used view to capture ECG heart's 

electrical signals [17]. The ECG recordings are frequently 

affected by various types of noise and artifacts, which can 

hinder the accurate identification of critical fiducial points, 

such as P, Q, R, S, and T, as well as associated intervals and 

offsets like P-onset, P-offset, QRS-onset, T-peaks, and T-

offset [17]. There several sources of noise, including power 

line interference, baseline wander, and poor contact 

between electrodes and the skin [18, 19]. Analysing the 

ECG heart signal, feature extraction is usually performed to 

obtain the meaningful data for further analysis [6, 20].  

Consequent upon the inadequacy with the traditional 

approach to ECG heartbeat analysis characterized by human 

errors, ML techniques are used to analyse the extracted 

features. The classifiers were designed to categories heart 

into various classes depending to the dataset adopted. 

Alarsan et al. [6] explored various ML techniques, including 

DT, RF, and GBDT. Their experiments on the MIT-BIH 

dataset revealed that RF outperformed other methods in 

classification accuracy. Similarly, Aziz et al. [21] developed 

two novel algorithms: Two-Event Related Moving 

Averages (TERMA) and Fractional Fourier Transform 

(FrFT). The TERMA algorithm identified regions of 

interest to locate specific peaks, while FrFT analysed ECG 

signals in the time-frequency domain to highlight peak 

locations. Features such as detected peaks, inter-peak 

durations, and other characteristics were then used to train 

Support Vector Machine (SVM) and Multilayer Perceptron 

(MLP) classifiers. The classifiers, trained on the MIT-BIH 

arrhythmia database, demonstrated robustness when tested 

on the INCART and SPH databases. Also, Malakouti [22] 

investigated various ML approaches, including Gaussian 

Naïve Bayes (NB), RF, Logistic Regression, Linear 

Discriminant Analysis (LDA), and Dummy Classifiers, to 

automate ECG heartbeat classification. The study employed 

10-fold cross-validation to mitigate overfitting. Sinal et al. 

[23] had previously utilized k-Nearest Neighbours (KNN) 

and DT for multiclass classification of ECG signals. 

While methods of ensemble [24] and heuristic 

optimization [25] techniques has been study for heartbeat 

classification, conventional ML lacks automatic feature 

extraction. Hence, DL techniques, particularly MLPs and 

CNNs, have gained popularity for their ability to automate 

feature extraction and classification of time-based signals. 

Gajendran et al. [26] studied the conversion of 1-D ECG 

signals into 2-D images using Continuous Wavelet 

Transform (CWT) to generate scalograms. These 

scalograms were processed using several pre-trained 

models, including VGGNet, Darknet, ResNet, GoogLeNet, 

EfficientNet, and DenseNet. However, the anomaly 
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approach to heartbeat detect is limited in the study. In an 

earlier study, Roy et al. [16] introduced ECG-NET, another 

LSTM-based AE model designed specifically for detecting 

anomalous ECG signals, with an emphasis on arrhythmia 

detection. Similar to Faraday’s work [12], ECG-NET was 

trained exclusively on normal ECG signals, with anomalies 

identified using reconstruction loss thresholds established 

via manual and automated methods. The ECG-NET 

model’s encoder processes 140 consecutive time steps of 

normal ECG data through three LSTM layers. The first layer, 

with 128 hidden neurons, captures temporal dependencies, 

producing hidden states that pass through a Rectified Linear 

Unit (ReLU) activation-function. The decoder mirrors the 

encoder’s architecture, beginning with an LSTM layer 

containing 32 hidden neurons, followed by layers with 64 

and 128 hidden neurons, respectively. ReLU activation and 

a 20% dropout rate in each layer enhance the model’s ability 

to extract nonlinear temporal features. Nevertheless, these 

existing studies lacks capturing subtle, patient-specific 

irregularities without misclassifying them as noise. In 

addition, the techniques used are inadequate for accounting 

for the statistical variability of ECG features 

 
3. METHODOLOGY 

3.1 Proposed LAESN Architecture 

The overall conceptual design of the LAESN model is 

depicted in Figure 1. The process begins with the 

preprocessing of raw ECG signals to remove artifacts and 

noise, ensuring cleaner and more reliable input data for 

subsequent analysis. Preprocessed signals undergo 

segmentation to extract temporal features and contextual 

relevance. Then, exploratory analysis is conducted on the 

signal, leveraging visualization techniques to uncover 

meaningful patterns. The ECG dataset is subsequently 

filtered, using normal signal subset as a training-set, while 

the entire data is used as test-set to develop a robust anomaly 

detection model. 

The core of the framework utilizes an advanced LAESN 

(LSTM-based AE with Stratified Normalization Embedding) 

model. This model is specifically designed to analyze ECG 

signals, detect subtle variations, and distinguish between 

normal and abnormal patterns. The test data, is used to 

evaluate the model's performance, ensuring generalizability 

and accuracy in anomaly detection. The final outcome 

highlights anomalies in the heartbeat signals, contributing 

to the identification of potential heart-related issues. 

 

3.2 Dataset Description 

The dataset used in this study is the ECG5000 dataset. It 

consists 5,000 individual heartbeats extracted from a larger 

ECG recording. It is widely used for time series 

classification tasks, with each heartbeat categorized into 

five distinct classes representing different types of cardiac 

arrhythmias: Normal, Left Bundle Branch Block (LBBB), 

Right Bundle Branch Block (RBBB), Premature Ventricular 

Contraction (PVC) and Paced Beat (PB) [16], as presented 

in Table 1.  Each heartbeat is represented as a time series of 

140 data points, sourced from the BIDMC Congestive Heart 

Failure Database (CHFD) on PhysioNet. The ECG signals 

were digitized at a sampling rate of 500Hz/s.  The dataset is 

divided into a training set of 500 observations and a test set 

of 4,500 observations. Each sample consists of 141 feature 

points, including a target label.  The ECG5000 dataset is 

sourced in the link at: 

https://www.timeseriesclassification.com/description.php?

Dataset=ECG5000. 

 
Figure 1: The conceptual framework of the LAESN model 

 

Table 1: Overview of ECG500 dataset 

Heartbeat Classes Description 

N-Normal A normal rhythm of the heart 

Left Bundle Branch 

Block (LBBB) 

A situation where the left 

ventricle is activated later than 

normal. 

Right Bundle 

Branch Block 

(RBBB) 

A situation where the right 

ventricle activation is delayed. 

Premature 

Ventricular 

Contraction (PVC) 

It represents those extra 

heartbeats originating in the 

ventricles. 

Paced Beat 

These are the heartbeats from an 

artificial pacemaker. They more 

likely the fusion beats 

 

3.3 Proposed Method 

The proposed LAESN AD model integrates an AE with 

LSTM layers, with SN incorporated in the process to 

enhance the normalization of data. The core, AE includes 
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two primary components: the encoding and decoding phases 

expressed as shown in Equations (1) and (2).  
 

𝑒 = 𝑓(𝑊𝑥 + 𝑏)        (1) 
 

𝑥′ = 𝑓′(𝑊′𝑒 + 𝑏′)        (2) 
 

where the activation-function is f, W denoted the weight 

matrix, b represents the bias vector, 𝑓′, 𝑊′, and 𝑏′  are the 

parameters for the decoding phase, analogous to f, W, and b 

in the encoding phase. 

Unlike the dense layer-based AE, LSTM layers are used 

to better capture the temporal dependencies inherent in ECG 

data, as illustrated in Figure 2. The LSTMs are particularly 

suitable for sequential data such as ECG signals due to the 

ability to process information across time steps effectively. 

The proposed LSTM model operates with a hidden layer 

comprising h units. Let 𝑋𝑡 ∈ ℝ𝑛×𝑑 represent data input at 

time-step, t, where n is the batch size, and d is the feature-

dimension. Similarly, 𝐻𝑡−1 ∈ ℝ𝑛×ℎ  represents the hidden 

state from the previous time step. The LSTM model 

calculates the following gates for time step h [16]. The input, 

forget, and output gates are therefore expressed in Equations 

(3) – (5). 
 

𝐼𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑖 + 𝐻𝑡−1𝑊ℎ𝑖 + 𝑏𝑖)       (3) 

 

𝐹𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑓 + 𝐻𝑡−1𝑊ℎ𝑓 + 𝑏𝑓)       (4) 

 

𝑂𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑜 + 𝐻𝑡−1𝑊ℎ𝑜 + 𝑏𝑜)      (5) 
 

where 𝑊𝑥𝑖 , 𝑊𝑥𝑓 , 𝑊𝑥𝑜  ∈ ℝ𝑑×ℎ ,  𝑊ℎ𝑖 , 𝑊ℎ𝑓 , 𝑊ℎ𝑜  ∈ ℝℎ×ℎ , 

and 𝑏𝑖, 𝑏𝑓, 𝑏𝑜 ∈ ℝ1×ℎ denote the weight matrices and bias 

vectors for the respective gates.  

The activation function  𝜎  is typically the sigmoid 

function, which maps the input values to a range between 0 

and 1. Memory Cell Update is then computed next, which 

is defined as the candidate memory cell 𝐶̂𝑡 calculated using 

the hyperbolic tangent tanh function, producing values 

within the range [-1, 1]. This ensures smooth activation 

transitions and maintains stability during the learning 

process. The mathematical formulation for 𝐶̂𝑡  is as in 

Equation (6). 

   

𝐶̂𝑡 =  𝑡𝑎𝑛ℎ(𝑋𝑡𝑊𝑥𝑐 + 𝐻𝑡−1𝑊ℎ𝑐 + 𝑏𝑐)                              (6) 
 

 
Figure 2: The proposed LSTM-AE model 

 

Whereas, the Stratified Normalization (SN) shown in 

Figure 3 involves normalizing weights within each class 

using the class distribution as a prior and then performing 

normalization across classes. This approach, introduced by 

Song et al. [27], is grounded in the principle of stratified 

sampling.  Earlier study to LogitBoost algorithm shows that 

SN is equally relevant for DL training, as demonstrated by 

[28]. Unlike instance normalization, which is typically 

restricted to image data and does not normalize across the 

batch, SN leverages participant labels as additional 

information to normalize features. This makes SN versatile 

and extendable to various types of data, beyond just image-

based datasets. Mathematically, SN can be expressed for an 

input feature vector 𝑥  belonging to a stratum 𝑘 . The 

normalized value 𝑥𝑖
′ is computed using Equation (7). 

 

𝑥̂𝑖,𝑘 =
𝑥𝑖,𝑘−𝜇𝑘

𝜎𝑘+𝜖
         (7) 

 

where 𝑥𝑖 is the i-th feature value of the input,  𝜇𝑘 denotes 

the mean and 𝜎𝑘  represents the standard deviation of the 

features for stratum 𝑘, 𝜖 is a small constant to ensure non-

zero division, and 𝑥𝑖
′  represents the normalized feature 

value. 

 

The mean, 𝜇𝑘 is computed as shown in Equation (8). 

 

𝜇𝑘 =
1

𝑁𝑘
∑ 𝑥𝑖,𝑘

𝑁𝑘
𝑖=1                           (8) 

 

While the standard deviation, 𝜎𝑘  is expressed as in 

Equation (9). 

 

𝜎𝑘 = √
1

𝑁𝑘
∑ (𝑥𝑖,𝑘 − 𝜇𝑘)

2𝑁𝑘
𝑖=1                     (9) 

 

The SN step-by-step process is defined as follows: 

i. Identify which stratum k each input sample 𝑥𝑖 

belongs to 

ii. For each stratum k, compute the mean 𝜇𝑘  and 

standard deviation 𝜎𝑘  based only on the samples 

belonging to that stratum. 

iii. For every sample 𝑥𝑖  in stratum k, apply the 

normalization formula defined for 𝑥𝑖
′. 

 

 
Figure 3: Stratified normalization process 
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3.2 Proposed Method 

The following performance metrics were used in the 

study to evaluate the proposed LAESN model, including 

Mean Square Error (MSE), recall, F1-score, precision, 

Youden Index, and AUC. Accuracy was not primarily 

focused on, since it will not provide right judgement for an 

imbalance data. The brief description of the metrics is 

provided in Table 2 as follows: 

 

Table 2: Overview of the performance metrics 

Metrics Formular 

MSE 
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

Accuracy 
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

F1-score 
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Youden Index (J) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 

 

where True Positives (TP) represent the number of cases 

correctly identified as positive. False Positives (FP) refer to 

instances that are incorrectly classified as positive when 

they are actually negative. True Negatives (TN) denote 

cases that are accurately identified as negative. False 

Negatives (FN) occur when positive cases are mistakenly 

labeled as negative, True Positive Rate (TPR), False 

Positive Rate (FPR), and True Negative Rate (TNR). 

 

The AUC, which denotes the area under the curve, 

explains the TPR against the False Positive Rate (FPR). The 

AUC quantifies the model’s ability to differentiate between 

classes—in this case, normal and anomalous heartbeats, as 

illustrated in Figure 4. A higher AUC indicates a stronger 

ability to correctly classify normal heartbeats as normal (0) 

and anomalies as anomalies (1). In the context of AD for 

heartbeats, a high AUC signifies a more effective model in 

distinguishing between patients with and without heart 

disease. 

 

 
Figure 4: AUC and Youden Index metrics [29] 

 

3.3 Experimental Setup 

Experiments were conducted on the ECG5000 dataset, 

which was already pre-segmented. Further processing was 

performed to include assessment of noise removal using 

wavelet decomposition and data slicing to extract labels and 

features. While, the dataset consists of 400 training and 

4,500 test samples across multiple classes, for this study, 

both sets were merged and reclassified into two categories: 

normal and abnormal heartbeat signals through filtering. 

The normal class was subsequently partitioned into training 

and test subsets in an 80:10 ratio, with an additional 10% of 

the test set held out for validation. In this study, imbalance 

inherent in the dataset is irrelevant during training, since the 

model is trained on normal signals. While it is 

understandable that the test set consisting the test holdout 

plus the anomalies might exhibit imbalance, a careful 

attention was paid to choose threshold for anomalies 

detection during evaluation. This threshold choosing criteria 

is further discussed in the result section. 

As a baseline, an AE with Dense layers was trained 

exclusively on normal signals and evaluated on the 

validation set alongside abnormal samples. The proposed 

LAESN extended this baseline by replacing Dense layers 

with LSTM units to capture temporal dependencies and 

inter-individual variability, while incorporating SN at the 

input preprocessing stage. SN was applied separately within 

each stratum of class labels, addressing amplitude 

heterogeneity across heartbeat categories. Crucially, SN 

was performed strictly before model training and did not 

interact with internal layers, thereby preventing label 

leakage while improving stability through consistent feature 

scaling. 

Model training employed the Adam optimizer with a 

batch size of 32 for 50 epochs, and LSTM layers utilized the 

‘Tanh’ activation function to ensure stable gradient flow. 

All experiments were conducted in Python 3.9 using Keras 

and TensorFlow on an Ubuntu 22.04 system equipped with 

a Ryzen 7 5700G CPU, 64 GB RAM, and an RTX 4060 Ti 

16G GPU. Model hyperparameters are summarized in Table 

3. 

https://doi.org/10.53982/ajeas.2025.0301.11-j


 
Stratified Normalization Technique with Long Short-Term Memory-Based Autoencoder for Anomaly Detection in 

Heartbeat ECG Data 
Johnson et al1 

https://doi.org/10.53982/ajeas.2025.0301.11-j    128 

 

 

 

Table 3: Hyperparameter setting for LAESN model 

Hyperparameter Value 

Number of Hidden Units 64, 32 

Dropout 0.3 

AF tanh 

Optimizer Adam 

Batch Size 32 

Sequence length 140 

Epoch 50 

Early stopping Monitor=’loss’, patience=5 

Model loss MSE 

Seed 42 

Model runtime 3ms/step 

 

4. RESULTS AND DISCUSSION 

4.1 Exploratory Analysis 

On visualizing the ECG5000 heartbeat signals, as shown 

in Figure 5, it was observed that the heartbeat categories 

exhibit distinguishable temporal and amplitude 

characteristics across different classes. The Normal class 

(depicted in bold blue) shows a well-defined waveform with 

sharp peaks and troughs, consistent with typical ECG 

patterns. In contrast, the LBBB and RBBB signals in green 

dotted and purple dashed lines, respectively revealed critical 

deviations in their QRS complexes. This indicates delays in 

electrical conduction. The PVC class in red dashed line 

exhibits the most pronounced anomaly, with an early and 

widened QRS complex and an irregular shape, deviating 

significantly from the Normal waveform, while the Paced 

Beat in orange line presents a distinct waveform altogether, 

characterized by flatter segments and an absence of the 

typical ECG morphology. The visualization provides the 

insight into the challenge posed by intra-class variability 

and inter-class similarities, especially between LBBB, 

RBBB, and Normal classes, which can affect the 

performance of traditional ML classifiers. 

 

 
Figure 5: Temporal and amplitude characteristics across 

different classes of ECG5000 dataset 

 

4.2 Class Distribution, Reconstruction Errors, and 

Thresholding 

Resulting from the class distribution, depicted in Figure 

6, it was observed that normal heartbeats constitute the 

majority of the recorded signals, accounting for 2919 

(58.38%) followed by the LBBB beats representing 1767 

(35.34%). The remaining categories RBBB, PVC, and 

Paced beats, account for smaller proportions, at 194 (3.88%), 

96 (1.92%), and 24 (0.48%) respectively. Leaning on this 

perspective, the distribution highlights the inherent class 

imbalance within the ECG5000 dataset. The dominance of 

normal heartbeats is potential to the models being biased 

towards this class, hence exhibiting high accuracy on 

normal beats but performing poorly on the less frequent but 

clinically significant abnormal beats. 

 

 
Figure 6: Distribution of classes in ECG5000 dataset 

 

The reconstruction errors plot for the models training, are 

as shown, in Figure 7 (a) and (b). Each subplot displays the 

original ECG signal in blue overlaid with the reconstructed 

signal from the model (in red). The shaded orange region 

visually represents the reconstruction error, along with the 

calculated RMSE for each representative heartbeat. It was 

observed that each model in (a) and (b) provides varying 

ability to capture and reproduce the characteristics of 

different heartbeat morphologies. For instance, some 

heartbeat types appear to be reconstructed with higher 

fidelity (smaller error area and lower RMSE value) 

compared to others. Higher reconstruction errors shown in 

certain heartbeat types suggest that the model struggles to 

learn the underlying patterns of these specific morphologies 

as effectively as others. The highlights the need to address 

the lower prevalence of these heartbeat types in the training 

data or the presence of unique features that are not well 

captured by the model's latent space. 

Comparatively, the reconstruction errors and the RMSE 

values obtained across the corresponding heartbeat types in 

both (a) and (b) show the proposed LAESN model offers 
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improvements in capturing the nuances of the ECG signals 

than the baseline AE. The observation suggests that the 

LAESN model incorporating temporal dependencies and a 

more sophisticated latent space, is better at reconstructing 

those particular morphologies than the baseline AE. 

Conversely, there is also observed where the reconstruction 

errors are comparable or even higher for certain heartbeat 

types in the LAESN model, indicating areas where the 

baseline AE performs just as well or even better. 

Anomaly detection was conducted by defining the 

threshold at the 95th percentile of the validation 

reconstruction error distribution. Threshold determination 

was guided by identifying an optimal cut-off point that 

mitigates the effects of class imbalance during evaluation. 

In the study, two strategies are employed: a non-parametric 

approach, where thresholds are set at specific percentiles of 

the reconstruction error distribution (e.g., 95th, 97.5th, or 

99th), and a parametric approach, where the threshold is 

computed as 𝜇 + 𝑘 × 𝜎 (with k = 2 or 3) [30]. Given the 

highly imbalanced nature of the dataset, greater emphasis 

was placed on reducing false negatives, since missed 

anomalies are typically more costly than false positives. The 

fitted normal distribution (μ = 0.0151, σ = 0.0101) 

reinforces this rationale, as reconstruction errors for normal 

samples are tightly clustered around the mean, forming a 

sharp peak with rapid decay, as shown in Figure 8. By 

contrast, anomalous cases are more likely to appear in the 

distribution’s tail, where higher reconstruction errors are 

concentrated. This distinct separation between the dense 

cluster of normal errors and the sparse anomalous tail 

provided a principled justification for selecting the non-

parametric threshold. Accordingly, the threshold was 

deliberately biased toward maximizing recall. 

 

 

 

 
(a) 
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(b) 

Figure 7: Reconstruction error plots for (a) proposed LAESN and (b) baseline AE models 

 

 
Figure 8: Threshold determination from normal 

distribution 

4.2 Model Results 

The comparative analysis of model performance in 

aggregated recording, illustrated in Figure 9, demonstrates 

that the proposed LAESN model achieves an accuracy of 

97.08%, outperforming the Baseline-AE, which attains 

92.92%. With respect to the F1-score, LAESN records 

96.60% compared to 91.40% for the Baseline-AE. Similarly, 

LAESN achieves an AUC of 99.52% and a Youden Index 

(J) of 95.00%, exceeding the corresponding values of 95.75 

% and 85.00% for the Baseline-AE. These results affirm the 

superior discriminative capacity and more optimal decision 

threshold of LAESN relative to the Baseline-AE. 

Importantly, both models report comparable specificity of 

95.00%, suggesting that the substantial gain in sensitivity 

observed in LAESN does not compromise its ability to 

correctly classify normal heartbeats. 

When benchmarked against conventional anomaly 

detection methods such as Isolation Forest (IF) and One-

Class SVM (OC-SVM), LAESN consistently outperforms 

or closely matches their performance across multiple 

metrics. For instance, while IF and OC-SVM achieve recalls 

of 97.93% and 99.09% respectively, their corresponding 

F1-scores of 93.49% and 95.93% remain below the 96.60% 

attained by LAESN. Furthermore, the AUC values indicate 

that Baseline-AE achieves 95.75%, IF achieves 95.15%, 

https://doi.org/10.53982/ajeas.2025.0301.11-j


 
Stratified Normalization Technique with Long Short-Term Memory-Based Autoencoder for Anomaly Detection in 

Heartbeat ECG Data 
Johnson et al1 

https://doi.org/10.53982/ajeas.2025.0301.11-j    131 

 

 

 

and OC-SVM achieves 99.23%, whereas LAESN maintains 

superiority at 99.52%. The Youden Index further reinforces 

this trend, with LAESN scoring J of 95.00, surpassing IF of 

89.68 and OC-SVM 93.74, thereby reflecting a more 

favourable balance between sensitivity and specificity.

 

 
Figure 9: Comparative analysis between LAESN and other ML anomaly models 

 

Further investigation using the TPR–FPR curves, as 

shown in Figure 10, reveals that the baseline-AE achieves 

an AUC of 0.9575, while the LAESN model attains a 

markedly higher value of 0.9952, reflecting its stronger 

capacity to distinguish between different heartbeat classes. 

The curve in panel (b) highlights limitations in the baseline-

AE, whereas panel (a) demonstrates the improvement 

achieved by LAESN. In comparison, conventional anomaly 

detection models such as IF achieving 95.15% and OC-

SVM of 99.23% yield competitive AUC scores, yet LAESN 

remains superior. 

 
 

  
(a)                                                                                      (b) 

 
(c) 

Figure 10: TRP-FPR curve of (a) LAESN, (b) Baseline-AE, and (c) IF and OC-SVM models 
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From a clinical perspective, the implications of these 

findings are significant. LAESN’s recall of 100% indicates 

that no pathological heartbeats were missed, although such 

outcomes may require further investigation and careful 

threshold calibration. Its precision of 93.44% further 

ensures that the majority of detected abnormalities 

correspond to true positive cases. Crucially, the F1-score 

underscores the balance achieved between precision and 

recall, demonstrating LAESN’s ability to minimize both 

false positives and false negatives. This balance is essential 

in cardiology, ensuring models that maximize recall at the 

expense of precision risk overwhelming clinicians with 

false alarms, while models biased toward precision may fail 

to detect life-threatening arrhythmias. Another notable 

trade-off lies in threshold sensitivity. Models tuned for 

maximal recall (as in the case of LAESN) may achieve 

perfect sensitivity but risk reductions in precision if 

thresholds are not carefully managed. Conversely, Baseline-

AE, with a recall of 90%, avoids over-detection but misses 

a clinically significant proportion of abnormal heartbeats, 

an outcome that is less desirable in medical screening 

contexts. 

In comparison with state-of-the-art models, it was 

observed that the LAESN model demonstrates an AUC of 

0.9952, showing comparative advantage with models in 

existing studies. When compared with [9], who employed a 

VRAE+SVM approach obtaining an accuracy of 0.9843, 

LAESN records a slightly lower accuracy of 0.9708. 

However, the proposed LAESN with AUC score of 0.9952 

better surpasses their AUC score of 0.9836, indicating better 

discriminatory power. Similarly, while [16] achieved a 

marginally higher accuracy of 0.9842 using Deep LSTM-

AE, the proposed LAESN offers a less accuracy of 0.9708. 

However, LAESN demonstrated a more balanced 

performance by achieving both a high AUC 0.9952 and an 

F1-score of 0.9661 (notably absent in Roy et al.’s work). 

The inclusion of F1-score in this work showcased 

transparency and a stronger focus on imbalanced data 

scenarios, where F1-score is known to provide a more 

holistic view of classification performance than accuracy 

alone. Additionally, Time Series Memory Augmented 

Autoencoder (TSMAE) model in [31] achieved an AUC of 

0.9516, which is significantly lower than that of LAESN, 

further affirming LAESN’s competitive detection capability. 

Moreover, looking at issues relating to deployment 

perspective, especially in resource-constrained or real-time 

settings, VRAE+SVM offers computational efficiency, ease 

of implementation, and better interpretability, as VRAE are 

typically more lightweight compared to sequential models 

like LSTM-based architectures. However, computational 

efficiency and interpretability are of less concerns in the 

current wave of technology with vast high-end resources 

and deep interpretable networks framework easily 

accessible. In addition, empirical evidence obtained from 

the motivation behind adopting LSTM-AE and supporting 

with the integration of SN to enhance sensitivity to inter-

patient variability has made a significant performance 

contribution to anomalous heartbeat detection. 

4.3 Limitations 

Despite the performance exhibited by the LAESN model, 

several limitations warrant consideration. First, the 

experimental evaluation was conducted on a single 

benchmark dataset, which restricts the scope of 

generalization. While this dataset is widely used in the 

anomaly detection community, its relatively constrained 

variability in heartbeat patterns may not fully reflect the 

heterogeneity present in real-world clinical populations. 

Consequently, the limitation underscores the importance of 

extending evaluation to larger and more diverse datasets. 

Secondly, the current framework implemented a data split 

to avoid unintended information leakage during. However, 

training and testing on overlapping patient data can 

artificially inflate performance metrics, further research 

interest may include rigorous evaluation protocols, such as 

leave-one-subject-out validation or stratifying validation, to 

ensure that the reported performance reflects genuine 

generalization rather than dataset-specific bias. 

Model’s reliance on reconstruction error thresholding 

introduces sensitivity to threshold selection. As highlighted 

in the preceding discussion, thresholds set at the distribution 

tail strongly influence the trade-off between recall and 

precision. While recall-biased thresholding proved 

advantageous in minimizing false negatives in this study, it 

may not be universally optimal across datasets with 

different class distributions. An overly aggressive threshold 

could increase false positives, potentially reducing clinical 

trust in the system. This challenge points toward the need 

for adaptive or dynamic thresholding strategies, possibly 

guided by cost-sensitive learning or Bayesian uncertainty 

quantification, to provide more robust decision-making 

across varying clinical contexts. These limitations suggest 

several directions for future research. Expanding 

evaluations to broader and more heterogeneous datasets 

would test the scalability and clinical robustness of LAESN. 

Incorporating subject-level validation protocols would 

mitigate risks of information leakage, while adaptive 

thresholding methods could refine sensitivity-specificity 

trade-offs in practice. Moreover, integration with real-time 

monitoring systems and prospective clinical trials could 

provide crucial insights into the translational potential of 

LAESN. 

 

5. CONCLUSION 

This study explored the detection of anomalies in 

heartbeat signals, discussing the critical role of the heart in 

sustaining life and the danger posed by abnormal rhythms, 

which has been recorded leading to severe health 

complications or even death. The study also highlighted 

early detection systems being vital for timely intervention. 

Moreover, traditional methods for analyzing heartbeat 

patterns are often limited by complexity and lack of 

precision. However, technological advancements, 

particularly in ECG monitoring and ML, have change the 

narrative both the timely collection and accurate 

interpretation of cardiac signals. While previous studies 

have introduced various ML models for heartbeat anomaly 
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detection, a major limitation has been their insufficient 

sensitivity to inter-patient variability. To address this gap, 

the proposed LAESN model was developed and evaluated 

using the ECG5000 dataset. The model achieved a superior 

AUC score of 99.52%, outperforming both the baseline AE 

and several state-of-the-art models. This highlights 

LAESN’s robust capability to detect anomalous heartbeats 

by effectively capturing temporal dependencies and subtle 

signal variations through its LSTM-based architecture that 

leans on the SN. The results underscore the importance of 

adopting advanced feature extraction and modeling 

techniques, LAESN, that are sensitive to diverse patient-

specific patterns. For future work, it is recommended to 

evaluate the model on additional ECG datasets to assess its 

generalizability to unseen cases. Furthermore, the 

integration and optimization of SN within the LSTM-AE 

framework as layer-embedding can be further explored to 

enhance performance and adaptability in real-world clinical 

applications. 
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APPENDIX I 

 
(a) A view of the human heart [1] 

 

 
(b) Cardiac cycle process [17] 
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