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Abstract: Disruptions in heartbeat patterns have been identified
as a critical health concern globally, often leading to serious
health risks and death. Due to the subtle and infrequent nature of
these irregularities, individuals may overlook early warning signs,
highlighting the need for continuous monitoring and early
detection systems. Traditional methods for detecting heartbeat
abnormalities, while contributing significantly in the past, are
often labour-intensive and lack the precision required for timely
intervention. Recent advancements, particularly in wearable
electrocardiogram (ECG) devices and machine learning (ML),
have changed the narrative in how heartbeat data is collected and
analysed. Despite the progress, existing ML models often fall short
in accounting for inter-patient variability, which is essential for
reliable anomaly detection across diverse populations. In
addressing the limitation, this paper proposes Long Short-Term
Memory implementation of Autoencoder (LSTM-AE) enhanced
with Stratified Normalisation (SN), called LAESN. The LAESN
model is designed to improve sensitivity to individual patient
differences in ECG signals. The LAESN was trained and evaluated
on the ECG5000 dataset using the ‘tanh’ activation function, a
batch size of 32, and 50 epochs. It achieved an F1 score and AUC
of 0.9660 and 0.9952, respectively, surpassing both the baseline
AE and other state-of-the-art models. These results highlight the
effectiveness of SN in strengthening the ECG anomaly detection
model, enabling it to capture subtle variations in heartbeat signals
and support a patient-centric anomaly detection system.

Keywords: Anomalies detection, arrhythmia, electrocardiogram,
heartbeat, stratified normalization.

1. INTRODUCTION

Heartbeat analysis has been widely studied in healthcare
analytics because of the important role it plays in good
health and well-being. The human heart is a vital organ in
the circulatory system that functions as a muscular pump
responsible for delivering oxygenated blood and essential
nutrients to tissues throughout the body [1]. An area of
interest in understanding heart functionality is called
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arrhythmia, which often times experiences dangerous
irregularities in its thythm. These irregularities, whether in
the form of bradycardia, premature contractions, or
tachycardia, pose serious health risks [2, 3]. The disruptions
in heart rhythm often led to cardiovascular disorders (CVD),
which are a major cause of global mortality. In 2019, for
instance, CVD was reported causing an approximately 18
million deaths globally [4] and 23.6 million deaths may
arise by 2030, highlighting the critical need for early
detection systems to help mitigate such fatalities. Over the
period of time, traditional methods of analysis of heartbeat
to detect abnormality are quite cumbersome and inaccurate.
Moreover, advances in technology, particularly wearable
Electrocardiogram (ECG) devices, have transformed how
heartbeat data is collected and analysed. Unlike traditional
methods, these wearable ECGs offer precise, real-time
digital data collection, allowing for more accurate
interpretation and enabling personalized treatments [5].
Over the past decade, many of the heartbeat ECG
analysis are approached using Machine Learning (ML)
techniques, of which classifying heartbeat into different
classes is more prevalent. Researchers have employed
numerous ML classifiers for heartbeat classification,
exploring various ML techniques, including Decision Trees
(DT), Random Forest (RF) and Gradient-Boosted Trees
(GBDT) [6]. Deep Learning (DL) models like
Convolutional Neural Networks (CNN) [4, 7], have also
shown promising results in ECG prediction. Additionally,
unsupervised approaches, including Autoencoders (AE) [8]
and hybrid models, have advanced the field of anomaly
detection [9]. However, Anomaly Detection (AD) has
emerged as a critical area in ML, gaining considerable
research attention due to its essential role in modern
applications like financial risk management, fraud detection,
network security, and healthcare analytics [10]. With the
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rapid growth of wearable devices [11], AD has become
significant where the detection of deviation from normal
patterns is crucial for monitoring cardiac health [11].

Unlike classification, AD focuses on identifying
abnormal heart rhythms relative to the normal baseline. AE
[8], particularly when combined with LSTM networks [12,
13], have shown success in this task by addressing long-
term dependencies, a challenge inherent in Recurrent
Neural Networks (RNNs) [14]. Despite these advances,
automatic detection of anomalies in heartbeat ECG data
remains difficult because of inherent variability in ECG
waveform morphology and individual patient differences
[15]. This variability arises from multiple factors, including
physiological differences, emotional states, and even
momentary fluctuations in heart rate patterns patient [5].
Specifically, variations in key ECG intervals such as RR and
QRS, as well as segments like PR and ST, often reflect
unique physiological processes in each patient [5]. These
variations make it difficult for traditional AD systems to
distinguish between normal physiological deviations and
actual outliers that signal abnormal heart conditions.
Detecting anomalies in ECG data, therefore, requires ML
model capable of capturing subtle, patient-specific
irregularities without misclassifying them as noise. In
addition, past AD studies are lacking in adequately
accounting for the statistical variability of ECG features [12,
16].

This paper, therefore, proposes an AD of ECG heartbeat
data, leveraging an LSTM-based AE architecture, enhanced
with Stratified Normalization (SN). The proposed model,
termed Long Short-Term Memory-Autoencoder embedding
Stratified Normalization LAESN model was evaluated
using ECG 5000. The results indicate that LAESN
demonstrated strong performance, effectively reusing
learned features and significantly improving AD accuracy.
Addressing the existing challenges, the following are
contributions of the paper:

i A novel model for improving on the inter-patient

variability of the heartbeat ECG.

il. A robust framework for detecting cardiac
anomalies by adapting to patient data through the
use of SN, while improving model performance.

The rest of the paper is presented in the following
sections below.

2. LITERATURE REVIEW

The human heart is an essential organ in the human,
regulating the delivering oxygenated blood and essential
nutrients to tissues throughout the body [1]. The heart (see
appendix I (a)), is muscular consisting of four compartments
that works in unison. The upper compartment, the left-and-
right atria, which receive blood into the heart and channel it
to the lower compartment, the left and right ventricles, via a
series of valves. The right-side of the heart contains
deoxygenated blood, while the left side -circulates
oxygenated blood received from the lungs.

The chambers cooperate to sustain the cardiac cycle
performing a sequence of mechanical actions from one
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heartbeat to the next. The cycle consists of two primary

phases: diastole, during which the heart relaxes to fill with

blood, and systole, denoting the heart’s contraction in

pumping blood to the rest of the body. During these phases,

atrial and ventricular volume and pressure exhibit rhythmic
fluctuations (see appendix I (b)).

ECG recordings are obtained in various formats.
Meanwhile, the standard 12-lead ECG placeable on the
human body is commonly used view to capture ECG heart's
electrical signals [17]. The ECG recordings are frequently
affected by various types of noise and artifacts, which can
hinder the accurate identification of critical fiducial points,
suchas P, Q, R, S, and T, as well as associated intervals and
offsets like P-onset, P-offset, QRS-onset, T-peaks, and T-
offset [17]. There several sources of noise, including power
line interference, baseline wander, and poor contact
between electrodes and the skin [18, 19]. Analysing the
ECG heart signal, feature extraction is usually performed to
obtain the meaningful data for further analysis [6, 20].

Consequent upon the inadequacy with the traditional
approach to ECG heartbeat analysis characterized by human
errors, ML techniques are used to analyse the extracted
features. The classifiers were designed to categories heart
into various classes depending to the dataset adopted.
Alarsan et al. [6] explored various ML techniques, including
DT, RF, and GBDT. Their experiments on the MIT-BIH
dataset revealed that RF outperformed other methods in
classification accuracy. Similarly, Aziz et al. [21] developed
two novel algorithms: Two-Event Related Moving
Averages (TERMA) and Fractional Fourier Transform
(FrFT). The TERMA algorithm identified regions of
interest to locate specific peaks, while FrFT analysed ECG
signals in the time-frequency domain to highlight peak
locations. Features such as detected peaks, inter-peak
durations, and other characteristics were then used to train
Support Vector Machine (SVM) and Multilayer Perceptron
(MLP) classifiers. The classifiers, trained on the MIT-BIH
arrhythmia database, demonstrated robustness when tested
on the INCART and SPH databases. Also, Malakouti [22]
investigated various ML approaches, including Gaussian
Naive Bayes (NB), RF, Logistic Regression, Linear
Discriminant Analysis (LDA), and Dummy Classifiers, to
automate ECG heartbeat classification. The study employed
10-fold cross-validation to mitigate overfitting. Sinal et al.
[23] had previously utilized k-Nearest Neighbours (KNN)
and DT for multiclass classification of ECG signals.

While methods of ensemble [24] and heuristic
optimization [25] techniques has been study for heartbeat
classification, conventional ML lacks automatic feature
extraction. Hence, DL techniques, particularly MLPs and
CNNs, have gained popularity for their ability to automate
feature extraction and classification of time-based signals.
Gajendran et al. [26] studied the conversion of 1-D ECG
signals into 2-D images using Continuous Wavelet
Transform (CWT) to generate scalograms. These
scalograms were processed using several pre-trained
models, including VGGNet, Darknet, ResNet, GooglLeNet,
EfficientNet, and DenseNet. However, the anomaly
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approach to heartbeat detect is limited in the study. In an
earlier study, Roy et al. [16] introduced ECG-NET, another
LSTM-based AE model designed specifically for detecting
anomalous ECG signals, with an emphasis on arrhythmia
detection. Similar to Faraday’s work [12], ECG-NET was
trained exclusively on normal ECG signals, with anomalies
identified using reconstruction loss thresholds established
via manual and automated methods. The ECG-NET
model’s encoder processes 140 consecutive time steps of
normal ECG data through three LSTM layers. The first layer,
with 128 hidden neurons, captures temporal dependencies,
producing hidden states that pass through a Rectified Linear
Unit (ReLU) activation-function. The decoder mirrors the
encoder’s architecture, beginning with an LSTM layer
containing 32 hidden neurons, followed by layers with 64
and 128 hidden neurons, respectively. ReLU activation and
a 20% dropout rate in each layer enhance the model’s ability
to extract nonlinear temporal features. Nevertheless, these
existing studies lacks capturing subtle, patient-specific
irregularities without misclassifying them as noise. In
addition, the techniques used are inadequate for accounting
for the statistical variability of ECG features

3. METHODOLOGY

3.1 Proposed LAESN Architecture

The overall conceptual design of the LAESN model is
depicted in Figure 1. The process begins with the
preprocessing of raw ECG signals to remove artifacts and
noise, ensuring cleaner and more reliable input data for
subsequent analysis. Preprocessed signals undergo
segmentation to extract temporal features and contextual
relevance. Then, exploratory analysis is conducted on the
signal, leveraging visualization techniques to uncover
meaningful patterns. The ECG dataset is subsequently
filtered, using normal signal subset as a training-set, while
the entire data is used as test-set to develop a robust anomaly
detection model.

The core of the framework utilizes an advanced LAESN

(LSTM-based AE with Stratified Normalization Embedding)

model. This model is specifically designed to analyze ECG
signals, detect subtle variations, and distinguish between
normal and abnormal patterns. The test data, is used to
evaluate the model's performance, ensuring generalizability
and accuracy in anomaly detection. The final outcome
highlights anomalies in the heartbeat signals, contributing
to the identification of potential heart-related issues.

3.2 Dataset Description

The dataset used in this study is the ECG5000 dataset. It
consists 5,000 individual heartbeats extracted from a larger
ECG recording. It is widely used for time series
classification tasks, with each heartbeat categorized into
five distinct classes representing different types of cardiac
arrhythmias: Normal, Left Bundle Branch Block (LBBB),
Right Bundle Branch Block (RBBB), Premature Ventricular
Contraction (PVC) and Paced Beat (PB) [16], as presented
in Table 1. Each heartbeat is represented as a time series of
140 data points, sourced from the BIDMC Congestive Heart
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Failure Database (CHFD) on PhysioNet. The ECG signals
were digitized at a sampling rate of S00Hz/s. The dataset is
divided into a training set of 500 observations and a test set
of 4,500 observations. Each sample consists of 141 feature
points, including a target label. The ECG5000 dataset is
sourced in the link at:
https://www.timeseriesclassification.com/description.php?
Dataset=ECG5000.

ECG5000
DATASET
Raw Signal v

_______ l —----Preprocessing _________

! ]

! |

! B . 1 Exploratory Analysis
i let:c’ts & 1 s Sign al_ E—b of processed ECG

! 01s¢ Removal egmentation | signal

i

Signal filtering
Nornal Signal
y vy

| Train | | Validation

Signal

Test holdout

e

Y

4>| Stratified Normalization |

LAESN Model
LSTM-AE
Pipeline —v| Evaluation |

' y

Figure 1: The conceptual framework of the LAESN model

Table 1: Overview of ECG500 dataset
Heartbeat Classes Description

N-Normal A normal rhythm of the heart
Lef Bundle Branch L4 O e Tt than
Block (LBBB)
normal.
Right Bundle A situation where the right
Branch Block entricle activation is delayed
(RBBB) v v yed.
Premature It represents those extra
Ventricular heartbeats originating in the

Contraction (PVC) ventricles.
These are the heartbeats from an
artificial pacemaker. They more

likely the fusion beats

Paced Beat

3.3 Proposed Method

The proposed LAESN AD model integrates an AE with
LSTM layers, with SN incorporated in the process to
enhance the normalization of data. The core, AE includes
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two primary components: the encoding and decoding phases
expressed as shown in Equations (1) and (2).

e=f(Wx+Db) 1

2

where the activation-function is f, W denoted the weight
matrix, b represents the bias vector, f', W', and b’ are the
parameters for the decoding phase, analogous to f, W, and b
in the encoding phase.

Unlike the dense layer-based AE, LSTM layers are used
to better capture the temporal dependencies inherent in ECG
data, as illustrated in Figure 2. The LSTMs are particularly
suitable for sequential data such as ECG signals due to the
ability to process information across time steps effectively.
The proposed LSTM model operates with a hidden layer
comprising h units. Let X, € R™*¢ represent data input at
time-step, t, where n is the batch size, and d is the feature-
dimension. Similarly, H,_; € R™" represents the hidden
state from the previous time step. The LSTM model
calculates the following gates for time step h [16]. The input,
forget, and output gates are therefore expressed in Equations

3)- ).

x'=f'W'e+b')

Iy = o (X Wy + Hi_ Wy + b)) 3
Ft = O-(Xthf + Ht_1th + bf) (4)
0y = 0(XWyo + Hi_1Whpo + by) Q)

where Wy, Wyp, Wyy € R Wiy, Wyp, Wy, € RV,
and b;, by, b, € R™" denote the weight matrices and bias
vectors for the respective gates.

The activation function ¢ is typically the sigmoid
function, which maps the input values to a range between 0
and 1. Memory Cell Update is then computed next, which
is defined as the candidate memory cell €, calculated using
the hyperbolic tangent tanh function, producing values
within the range [-1, 1]. This ensures smooth activation
transitions and maintains stability during the learning
process. The mathematical formulation for €, is as in
Equation (6).

tanh (X Wye + He_ Wy + b,)

Encoding

(6)

OuTPUT

Normal

Anomalies

Decoding
Figure 2: The proposed LSTM-AE model

Whereas, the Stratified Normalization (SN) shown in
Figure 3 involves normalizing weights within each class
https:/ /doi.org/10.53982 /ajeas.2025.0301.11+
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using the class distribution as a prior and then performing
normalization across classes. This approach, introduced by
Song et al. [27], is grounded in the principle of stratified
sampling. Earlier study to LogitBoost algorithm shows that
SN is equally relevant for DL training, as demonstrated by
[28]. Unlike instance normalization, which is typically
restricted to image data and does not normalize across the
batch, SN leverages participant labels as additional
information to normalize features. This makes SN versatile
and extendable to various types of data, beyond just image-
based datasets. Mathematically, SN can be expressed for an
input feature vector x belonging to a stratum k. The
normalized value x; is computed using Equation (7).
o — Xik—Hk

Xije ==~ (7

Ote
where x; is the i-th feature value of the input, u; denotes
the mean and oy, represents the standard deviation of the
features for stratum k, € is a small constant to ensure non-

zero division, and x; represents the normalized feature
value.

The mean, p; is computed as shown in Equation (8).
®

— L Nk
Hi = N—kZizl Xik

While the standard deviation, g, is expressed as in
Equation (9).

O = \/NikZﬁvfl(xi,k - Hk)z )
The SN step-by-step process is defined as follows:
i. Identify which stratum k each input sample x;
belongs to
ii. For each stratum k, compute the mean p;, and
standard deviation g, based only on the samples
belonging to that stratum.
iii. For every sample x; in stratum k, apply the
normalization formula defined for x;.

Samples per

Class

xl Normalization
f Process
Normalized
X2 | | samples per class
N,
| | Wherei =1,2,..n

X3

Figure 3: Stratified normalization process
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3.2 Proposed Method

The following performance metrics were used in the
study to evaluate the proposed LAESN model, including
Mean Square Error (MSE), recall, Fl-score, precision,
Youden Index, and AUC. Accuracy was not primarily
focused on, since it will not provide right judgement for an
imbalance data. The brief description of the metrics is
provided in Table 2 as follows:

Table 2: Overview of the performance metrics

Metrics Formular
v .
MSE ;Z(yi -9
i=1
A (TP + TN)
ceuracy (TP + TN + FP + FN)
TP
Recall I
TP + FN
Specificit TN
CCI1I1C1 e———
P Y TN + FP
Procisi TP
recision TP + FP)
2 X Precision X Recall
F1-score —
Precision + Recall
Youden Index (J) Sensitivity + Specificity — 1

where True Positives (TP) represent the number of cases
correctly identified as positive. False Positives (FP) refer to
instances that are incorrectly classified as positive when
they are actually negative. True Negatives (TN) denote
cases that are accurately identified as negative. False
Negatives (FN) occur when positive cases are mistakenly
labeled as negative, True Positive Rate (TPR), False
Positive Rate (FPR), and True Negative Rate (TNR).

The AUC, which denotes the area under the curve,
explains the TPR against the False Positive Rate (FPR). The
AUC quantifies the model’s ability to differentiate between
classes—in this case, normal and anomalous heartbeats, as
illustrated in Figure 4. A higher AUC indicates a stronger
ability to correctly classify normal heartbeats as normal (0)
and anomalies as anomalies (1). In the context of AD for
heartbeats, a high AUC signifies a more effective model in
distinguishing between patients with and without heart
disease.

https:/ /doi.org/10.53982 / ajeas.2025.0301.11-]
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cutoff for
high performing model

— cutoff -

[~
No discrimination
AUC=0.5

|
Youden Index ‘\
@!

True positive rate
(Sensitivity)
W
=
l

0% 50%
False positive rate
(1-Specificity)
Figure 4: AUC and Youden Index metrics [29]

100%

3.3 Experimental Setup

Experiments were conducted on the ECG5000 dataset,
which was already pre-segmented. Further processing was
performed to include assessment of noise removal using
wavelet decomposition and data slicing to extract labels and
features. While, the dataset consists of 400 training and
4,500 test samples across multiple classes, for this study,
both sets were merged and reclassified into two categories:
normal and abnormal heartbeat signals through filtering.
The normal class was subsequently partitioned into training
and test subsets in an 80:10 ratio, with an additional 10% of
the test set held out for validation. In this study, imbalance
inherent in the dataset is irrelevant during training, since the
model is trained on normal signals. While it is
understandable that the test set consisting the test holdout
plus the anomalies might exhibit imbalance, a careful
attention was paid to choose threshold for anomalies
detection during evaluation. This threshold choosing criteria
is further discussed in the result section.

As a baseline, an AE with Dense layers was trained
exclusively on normal signals and evaluated on the
validation set alongside abnormal samples. The proposed
LAESN extended this baseline by replacing Dense layers
with LSTM units to capture temporal dependencies and
inter-individual variability, while incorporating SN at the
input preprocessing stage. SN was applied separately within
each stratum of class labels, addressing amplitude
heterogeneity across heartbeat categories. Crucially, SN
was performed strictly before model training and did not
interact with internal layers, thereby preventing label
leakage while improving stability through consistent feature
scaling.

Model training employed the Adam optimizer with a
batch size of 32 for 50 epochs, and LSTM layers utilized the
‘Tanh’ activation function to ensure stable gradient flow.
All experiments were conducted in Python 3.9 using Keras
and TensorFlow on an Ubuntu 22.04 system equipped with
a Ryzen 7 5700G CPU, 64 GB RAM, and an RTX 4060 Ti
16G GPU. Model hyperparameters are summarized in Table
3.
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Table 3: Hyperparameter setting for LAESN model

Hyperparameter Value
Number of Hidden Units 64, 32
Dropout 0.3
AF tanh
Optimizer Adam
Batch Size 32
Sequence length 140
Epoch 50
Early stopping Monitor=loss’, patience=>5
Model loss MSE
Seed 42
Model runtime 3ms/step

4. RESULTS AND DISCUSSION

4.1 Exploratory Analysis

On visualizing the ECG5000 heartbeat signals, as shown
in Figure 5, it was observed that the heartbeat categories
exhibit  distinguishable temporal and amplitude
characteristics across different classes. The Normal class
(depicted in bold blue) shows a well-defined waveform with
sharp peaks and troughs, consistent with typical ECG
patterns. In contrast, the LBBB and RBBB signals in green
dotted and purple dashed lines, respectively revealed critical
deviations in their QRS complexes. This indicates delays in
electrical conduction. The PVC class in red dashed line
exhibits the most pronounced anomaly, with an early and
widened QRS complex and an irregular shape, deviating
significantly from the Normal waveform, while the Paced
Beat in orange line presents a distinct waveform altogether,
characterized by flatter segments and an absence of the
typical ECG morphology. The visualization provides the
insight into the challenge posed by intra-class variability
and inter-class similarities, especially between LBBB,
RBBB, and Normal classes, which can affect the
performance of traditional ML classifiers.

— Nomal ’
- LehBER

U .. igntegs
-- B

1 — paced et

.....

Amplitude
'

0 n [l [ 8 100 n 10
Time (ms)

Figure 5: Temporal and amplitude characteristics across
different classes of ECG5000 dataset
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4.2 Class Distribution, Reconstruction Errors, and
Thresholding
Resulting from the class distribution, depicted in Figure
6, it was observed that normal heartbeats constitute the
majority of the recorded signals, accounting for 2919
(58.38%) followed by the LBBB beats representing 1767
(35.34%). The remaining categories RBBB, PVC, and
Paced beats, account for smaller proportions, at 194 (3.88%),
96 (1.92%), and 24 (0.48%) respectively. Leaning on this
perspective, the distribution highlights the inherent class
imbalance within the ECG5000 dataset. The dominance of
normal heartbeats is potential to the models being biased
towards this class, hence exhibiting high accuracy on
normal beats but performing poorly on the less frequent but
clinically significant abnormal beats.

58.38%

= Normal beats

mmm Left-BBB beats
Right-BBB beats
PVC beats

mmm Paced beats

— (0.48%

1.92%

3.88%

35.34%

Figure 6: Distribution of classes in ECG5000 dataset

The reconstruction errors plot for the models training, are
as shown, in Figure 7 (a) and (b). Each subplot displays the
original ECG signal in blue overlaid with the reconstructed
signal from the model (in red). The shaded orange region
visually represents the reconstruction error, along with the
calculated RMSE for each representative heartbeat. It was
observed that each model in (a) and (b) provides varying
ability to capture and reproduce the characteristics of
different heartbeat morphologies. For instance, some
heartbeat types appear to be reconstructed with higher
fidelity (smaller error area and lower RMSE value)
compared to others. Higher reconstruction errors shown in
certain heartbeat types suggest that the model struggles to
learn the underlying patterns of these specific morphologies
as effectively as others. The highlights the need to address
the lower prevalence of these heartbeat types in the training
data or the presence of unique features that are not well
captured by the model's latent space.

Comparatively, the reconstruction errors and the RMSE
values obtained across the corresponding heartbeat types in
both (a) and (b) show the proposed LAESN model offers
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improvements in capturing the nuances of the ECG signals
than the baseline AE. The observation suggests that the
LAESN model incorporating temporal dependencies and a
more sophisticated latent space, is better at reconstructing
those particular morphologies than the baseline AE.
Conversely, there is also observed where the reconstruction
errors are comparable or even higher for certain heartbeat
types in the LAESN model, indicating areas where the
baseline AE performs just as well or even better.

Anomaly detection was conducted by defining the
threshold at the 95th percentile of the validation
reconstruction error distribution. Threshold determination
was guided by identifying an optimal cut-off point that
mitigates the effects of class imbalance during evaluation.
In the study, two strategies are employed: a non-parametric
approach, where thresholds are set at specific percentiles of
the reconstruction error distribution (e.g., 95th, 97.5th, or

Heartbeat ECG Data
Johnson et al?
99th), and a parametric approach, where the threshold is
computed as u + k X o (with k = 2 or 3) [30]. Given the
highly imbalanced nature of the dataset, greater emphasis
was placed on reducing false negatives, since missed
anomalies are typically more costly than false positives. The
fitted normal distribution (u = 0.0151, ¢ = 0.0101)
reinforces this rationale, as reconstruction errors for normal
samples are tightly clustered around the mean, forming a
sharp peak with rapid decay, as shown in Figure 8. By
contrast, anomalous cases are more likely to appear in the
distribution’s tail, where higher reconstruction errors are
concentrated. This distinct separation between the dense
cluster of normal errors and the sparse anomalous tail
provided a principled justification for selecting the non-
parametric threshold. Accordingly, the threshold was
deliberately biased toward maximizing recall.
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Figure 7: Reconstruction error plots for (a) proposed LAESN and (b) baseline AE models
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4.2 Model Results

The comparative analysis of model performance in
aggregated recording, illustrated in Figure 9, demonstrates
that the proposed LAESN model achieves an accuracy of
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97.08%, outperforming the Baseline-AE, which attains
92.92%. With respect to the Fl-score, LAESN records
96.60% compared to 91.40% for the Baseline-AE. Similarly,
LAESN achieves an AUC of 99.52% and a Youden Index
(J) 0 95.00%, exceeding the corresponding values of 95.75
% and 85.00% for the Baseline-AE. These results affirm the
superior discriminative capacity and more optimal decision
threshold of LAESN relative to the Baseline-AE.
Importantly, both models report comparable specificity of
95.00%, suggesting that the substantial gain in sensitivity
observed in LAESN does not compromise its ability to
correctly classify normal heartbeats.

When benchmarked against conventional anomaly
detection methods such as Isolation Forest (IF) and One-
Class SVM (OC-SVM), LAESN consistently outperforms
or closely matches their performance across multiple
metrics. For instance, while IF and OC-SVM achieve recalls
of 97.93% and 99.09% respectively, their corresponding
F1-scores of 93.49% and 95.93% remain below the 96.60%
attained by LAESN. Furthermore, the AUC values indicate
that Baseline-AE achieves 95.75%, IF achieves 95.15%,
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and OC-SVM achieves 99.23%, whereas LAESN maintains
superiority at 99.52%. The Youden Index further reinforces
this trend, with LAESN scoring J of 95.00, surpassing IF of

Models

Heartbeat ECG Data
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89.68 and OC-SVM 93.74, thereby reflecting a more
favourable balance between sensitivity and specificity.

Em LAESN
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s IF

= OC-SVM

Accuracy Precision Recall F1-score Specificity

Metrics

Figure 9: Comparative analysis between LAESN and other ML anomaly models

Further investigation using the TPR-FPR curves, as
shown in Figure 10, reveals that the baseline-AE achieves
an AUC of 0.9575, while the LAESN model attains a
markedly higher value of 0.9952, reflecting its stronger
capacity to distinguish between different heartbeat classes.
The curve in panel (b) highlights limitations in the baseline-
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AE, whereas panel (a) demonstrates the improvement
achieved by LAESN. In comparison, conventional anomaly
detection models such as IF achieving 95.15% and OC-
SVM 0f 99.23% yield competitive AUC scores, yet LAESN
remains superior.
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Figure 10: TRP-FPR curve of (a) LAESN, (b) Baseline-AE, and (c) IF and OC-SVM models
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From a clinical perspective, the implications of these
findings are significant. LAESN’s recall of 100% indicates
that no pathological heartbeats were missed, although such
outcomes may require further investigation and careful
threshold calibration. Its precision of 93.44% further
ensures that the majority of detected abnormalities
correspond to true positive cases. Crucially, the Fl-score
underscores the balance achieved between precision and
recall, demonstrating LAESN’s ability to minimize both
false positives and false negatives. This balance is essential
in cardiology, ensuring models that maximize recall at the
expense of precision risk overwhelming clinicians with
false alarms, while models biased toward precision may fail
to detect life-threatening arrhythmias. Another notable
trade-off lies in threshold sensitivity. Models tuned for
maximal recall (as in the case of LAESN) may achieve
perfect sensitivity but risk reductions in precision if
thresholds are not carefully managed. Conversely, Baseline-
AE, with a recall of 90%, avoids over-detection but misses
a clinically significant proportion of abnormal heartbeats,
an outcome that is less desirable in medical screening
contexts.

In comparison with state-of-the-art models, it was
observed that the LAESN model demonstrates an AUC of
0.9952, showing comparative advantage with models in
existing studies. When compared with [9], who employed a
VRAE+SVM approach obtaining an accuracy of 0.9843,
LAESN records a slightly lower accuracy of 0.9708.
However, the proposed LAESN with AUC score of 0.9952
better surpasses their AUC score of 0.9836, indicating better
discriminatory power. Similarly, while [16] achieved a
marginally higher accuracy of 0.9842 using Deep LSTM-
AE, the proposed LAESN offers a less accuracy of 0.9708.
However, LAESN demonstrated a more balanced
performance by achieving both a high AUC 0.9952 and an
Fl-score of 0.9661 (notably absent in Roy et al.’s work).
The inclusion of Fl-score in this work showcased
transparency and a stronger focus on imbalanced data
scenarios, where Fl-score is known to provide a more
holistic view of classification performance than accuracy
alone. Additionally, Time Series Memory Augmented
Autoencoder (TSMAE) model in [31] achieved an AUC of
0.9516, which is significantly lower than that of LAESN,

further affirming LAESN’s competitive detection capability.

Moreover, looking at issues relating to deployment
perspective, especially in resource-constrained or real-time
settings, VRAE+SVM offers computational efficiency, ease
of implementation, and better interpretability, as VRAE are
typically more lightweight compared to sequential models
like LSTM-based architectures. However, computational
efficiency and interpretability are of less concerns in the
current wave of technology with vast high-end resources
and deep interpretable networks framework easily
accessible. In addition, empirical evidence obtained from
the motivation behind adopting LSTM-AE and supporting
with the integration of SN to enhance sensitivity to inter-
patient variability has made a significant performance
contribution to anomalous heartbeat detection.
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4.3 Limitations

Despite the performance exhibited by the LAESN model,
several limitations warrant consideration. First, the
experimental evaluation was conducted on a single
benchmark dataset, which restricts the scope of
generalization. While this dataset is widely used in the
anomaly detection community, its relatively constrained
variability in heartbeat patterns may not fully reflect the
heterogeneity present in real-world clinical populations.
Consequently, the limitation underscores the importance of
extending evaluation to larger and more diverse datasets.
Secondly, the current framework implemented a data split
to avoid unintended information leakage during. However,
training and testing on overlapping patient data can
artificially inflate performance metrics, further research
interest may include rigorous evaluation protocols, such as
leave-one-subject-out validation or stratifying validation, to
ensure that the reported performance reflects genuine
generalization rather than dataset-specific bias.

Model’s reliance on reconstruction error thresholding
introduces sensitivity to threshold selection. As highlighted
in the preceding discussion, thresholds set at the distribution
tail strongly influence the trade-off between recall and
precision. While recall-biased thresholding proved
advantageous in minimizing false negatives in this study, it
may not be universally optimal across datasets with
different class distributions. An overly aggressive threshold
could increase false positives, potentially reducing clinical
trust in the system. This challenge points toward the need
for adaptive or dynamic thresholding strategies, possibly
guided by cost-sensitive learning or Bayesian uncertainty
quantification, to provide more robust decision-making
across varying clinical contexts. These limitations suggest
several directions for future research. Expanding
evaluations to broader and more heterogeneous datasets
would test the scalability and clinical robustness of LAESN.
Incorporating subject-level validation protocols would
mitigate risks of information leakage, while adaptive
thresholding methods could refine sensitivity-specificity
trade-offs in practice. Moreover, integration with real-time
monitoring systems and prospective clinical trials could
provide crucial insights into the translational potential of
LAESN.

5. CONCLUSION

This study explored the detection of anomalies in
heartbeat signals, discussing the critical role of the heart in
sustaining life and the danger posed by abnormal rhythms,
which has been recorded leading to severe health
complications or even death. The study also highlighted
early detection systems being vital for timely intervention.
Moreover, traditional methods for analyzing heartbeat
patterns are often limited by complexity and lack of
precision. However, technological advancements,
particularly in ECG monitoring and ML, have change the
narrative both the timely collection and accurate
interpretation of cardiac signals. While previous studies
have introduced various ML models for heartbeat anomaly
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detection, a major limitation has been their insufficient
sensitivity to inter-patient variability. To address this gap,
the proposed LAESN model was developed and evaluated
using the ECG5000 dataset. The model achieved a superior
AUC score of 99.52%, outperforming both the baseline AE
and several state-of-the-art models. This highlights
LAESN’s robust capability to detect anomalous heartbeats
by effectively capturing temporal dependencies and subtle
signal variations through its LSTM-based architecture that
leans on the SN. The results underscore the importance of
adopting advanced feature extraction and modeling
techniques, LAESN, that are sensitive to diverse patient-
specific patterns. For future work, it is recommended to
evaluate the model on additional ECG datasets to assess its
generalizability to unseen cases. Furthermore, the
integration and optimization of SN within the LSTM-AE
framework as layer-embedding can be further explored to
enhance performance and adaptability in real-world clinical
applications.
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