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Abstract: Traditional Al struggles with interpretability and
generalisation in complex reasoning tasks, limiting its
effectiveness in domains like healthcare and robotics. This
systematic review aims to evaluate Neuro-Symbolic Reasoning
(NeSy) frameworks, which integrate symbolic reasoning with
neural networks to address these challenges. 28 empirical studies
(2017-2024) were analysed from arXiv, IEEE Xplore, PubMed,
and conferences, using a PRISMA-guided methodology with
inclusion criteria focusing on NeSy frameworks, performance, and
scalability. Results show NeSy systems achieve a mean accuracy
0f93.00% (SD 5.35%) across visual reasoning, NLP, robotics, and
healthcare, outperforming neural baselines by 26.00% on average
(SD 18.29%). Methodologies like pLogicNet, DiffLogic, and NSFR
enhance generalisation, e.g., in spatial reasoning tasks. However,
computational inefficiencies and explainability gaps persist (mean
quality score 7.53/9, SD 1.04). NeSyBench, using datasets like
MIMIC-1II and CLEVR, and NeSyEval for standardised metrics
(accuracy, Fl-score, interpretability), was proposed to refine
NeSy systems. This review provides a roadmap for developing
interpretable, scalable Al, advancing applications in diagnostics
and autonomous systems.

Keywords: Neuro-symbolic reasoning, artificial intelligence,
probabilistic logic neural networks, explainability, benchmarks.

1. INTRODUCTION

The quest for robust artificial intelligence (Al) has long
been shaped by the tension between symbolic and
connectionist paradigms. Early symbolic Al, rooted in the
physical symbol system hypothesis and championed by
thinkers like John McCarthy, emphasized logic and rule-
based reasoning, offering transparency but struggling with
adaptability to noisy, real-world data. In contrast, the rise of
neural networks and connectionist approaches enabled
powerful pattern recognition, driving breakthroughs in
natural language processing, computer vision, and decision-
making [15, 25]. However, traditional neural models often
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function as “black boxes”, lacking interpretability,
struggling with symbolic reasoning, and facing difficulties
in generalizing to tasks requiring structured, multi-step
inference [6, 23].

These limitations have spurred the development of
neuro-symbolic reasoning (NeSy), an interdisciplinary
approach that integrates statistical learning with structured
reasoning to combine the strengths of both paradigms [32].
NeSy frameworks enhance Al systems’ ability to perform
logical inference, improve explainability, and generalize
across complex tasks, as demonstrated by their superior
performance in domains like visual dialogue and knowledge
graph reasoning (see Figure 1). For example, [33] applied
probabilistic logic to neural models for scalable dynamic
obstacle avoidance in robotics, showcasing real-time
decision-making capabilities. Similarly, [3] introduced
DiffLogic, a differentiable framework blending rule-based
and embedding-based techniques for knowledge graph
reasoning, achieving 7-12% accuracy improvements over
baselines (see Figure 5).

The motivation for this systematic review stems from the
growing adoption of NeSy frameworks across diverse
applications, including visual understanding, natural
language interactions, and reinforcement learning, as
evidenced by the high-quality studies evaluated in Figure 5.
Research indicates that NeSy systems can outperform
purely neural or symbolic approaches in reasoning-
intensive tasks, such as [30] procedural semantics
framework, which achieved near-perfect accuracies in
visual dialogue tasks as shown in Figure 4. However, NeSy
remains an emerging field facing challenges like
computational inefficiencies, limited explainability, and the
absence of standardized evaluation benchmarks, which
hinders consistent performance comparisons across
frameworks like pLogicNet, DiffLogic, and NSFR [4].
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This review aims to provide a comprehensive analysis of
the NeSy landscape by categorizing key frameworks,
assessing their performance across varied use cases, and
identifying research gaps. A particular focus is placed on
applications like knowledge graph reasoning and visual
dialogue, where NeSy approaches excel, and on addressing
the need for standardized benchmarks, as proposed with
NeSyBench later in this manuscript. Despite their promise,
NeSy systems often face limitations, such as computational
intensity and reasoning shortcuts that undermine
explainability [19]. By critically evaluating these aspects,
this review seeks to highlight the state of the art and inspire
advancements in scalable, interpretable, and efficient NeSy
systems.

2. METHODOLOGY
This systematic review employs a PRISMA-guided
methodology to evaluate Neuro-Symbolic Reasoning (NeSy)
frameworks, focusing on their performance, interpretability,
and scalability across diverse domains and datasets.

2.1 Research Questions

This systematic review aims to explore the state of neuro-
symbolic reasoning in Al systems by addressing the
following research questions:

i. What are the major frameworks and
methodologies used in neuro-symbolic reasoning
systems?

il. How do neuro-symbolic systems perform

compared to purely neural or symbolic approaches
across various application domains?

What are the key challenges and limitations in the
design and deployment of neuro-symbolic systems?
What future directions and opportunities exist for
advancing neuro-symbolic reasoning in AI?

iii.
1v.

These questions guide the review’s focus on frameworks,
applications, performance evaluation, and gaps in the
current research landscape.

2.2 Search Strategy

To ensure a comprehensive and systematic review of the
literature, a detailed search strategy was designed and
implemented across multiple academic databases and
repositories. The databases searched included SpringerLink,
IEEE Xplore, and PubMed, which offer access to peer-
reviewed journal articles, conference proceedings, and
technical reports. Additionally, the open-access repository
arXiv was used to capture emerging research and preprints.
Together, these sources provided a balanced representation
of established findings and innovative developments in
neuro-symbolic Al.

Keywords and search strings were crafted to encompass
the core themes of the review, such as “neuro-symbolic AI”,
“neuro-symbolic reasoning”, “symbolic Al integration”,
and “Al reasoning frameworks”. Boolean operators (e.g.,
AND, OR, NOT) and wildcard symbols were strategically
used to refine the search results, ensuring a focus on the
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intersection of neural and symbolic methodologies. For
instance, a search string like “(neuro-symbolic AND
reasoning) OR (symbolic AI AND neural networks)” was
employed to maximize relevance.

The search was constrained to publications in English
and spanned the years 2017 to 2024 to capture the most
recent advancements in the field. Duplicates were removed
during the initial screening process. Citation tracking was
used to identify additional relevant studies by examining the
reference lists of selected papers. Manual searches of key
journals and conference proceedings, such as those from the
AAAI Conference on Artificial Intelligence and the
International Conference on Learning Representations
(ICLR), were also conducted to fill potential gaps left by
database queries.

The results from the database searches were organized
and screened using a systematic workflow. Titles and
abstracts were reviewed to eliminate irrelevant studies,
followed by a full-text analysis of selected articles to
confirm their inclusion based on predefined criteria. This
iterative process ensured a rigorous and exhaustive
identification of relevant literature for this review. The
search yielded 28 high-quality studies addressing neuro-
symbolic reasoning frameworks, their performance across
domains like healthcare, visual reasoning, and robotics, and
challenges such as scalability and explainability. These
studies utilized diverse datasets (e.g., MIMIC-III, CLEVR,
Freebase) and evaluation metrics (e.g., accuracy, F1-score,
interpretability scores), aligning with the review’s research
questions on frameworks, performance, and limitations.

Representative studies identified through this process
include those by [5], who designed a neurosymbolic XAl
framework for differential diagnosis by integrating
ClinicalBERT with ontology-driven reasoning to improve
both accuracy and interpretability in clinical decision
support. Using 15,000 patient records from the MIMIC-III
database, the framework achieved an accuracy of 0.86, F1-
score of 0.83, explainability score of 4.5/5, and a calibration
error of 0.03, outperforming subsymbolic and symbolic
baselines. Clinicians preferred its explanations in 83% of
cases, validating its effectiveness in healthcare settings.

[9] conducted a systematic review of 2,280 articles,
screened to 41 biomedical-relevant studies, to explore
neuro-symbolic Al in healthcare. Their analysis of datasets
and models like Logic Tensor Networks (LTN) and
DeepProbLog highlighted NeSy’s promise in diagnostics
and drug discovery, with superior accuracy and
interpretability compared to traditional deep neural
networks and transformers.

[17] reviewed neuro-symbolic Al across domains like
healthcare, finance, and IoT, examining models such as
LTNs and Neural Theorem Provers. Their findings
emphasized NeSy’s strengths in interpretability and
reasoning but noted challenges in scalability and
multimodal data integration, underscoring the need for
standardized evaluation frameworks.

[13] proposed a hybrid machine learning approach for
cerebral stroke prediction using 43,400 samples from
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HealthData.gov. Their model, combining missing value
imputation, PCA, K-means, and automated hyperparameter
optimization, reduced false negatives by 51.5% with 71.6%
accuracy, outperforming methods like Random Forest and
XGBoost.

[11] introduced CLEVR, a diagnostic dataset for visual
question answering, using synthetic 3D scenes to evaluate
reasoning abilities. CLEVR’s focus on compositional
reasoning and controlled attributes revealed weaknesses in
VQA models, making it a key benchmark for neuro-
symbolic systems.

2.3 Inclusion and Exclusion Criteria

The inclusion and exclusion criteria for the study
selection process were applied systematically to ensure
relevance and quality. This process is visually summarized
using a PRISMA 2022 flow diagram. The following
describes the key criteria:

Inclusion Criteria:

a) Studies focused explicitly on neuro-symbolic
reasoning systems or frameworks.

b) Papers  presenting novel  methodologies,
benchmarks, or applications in neuro-symbolic Al

¢) Research evaluating performance, scalability, or
interpretability of neuro-symbolic systems.

d) Publications in English, dated between 2017 and
2024.

Exclusion Criteria:

a) Studies unrelated to neuro-symbolic reasoning or
focusing solely on neural or symbolic Al

b) Non-peer-reviewed materials (e.g., blog posts,
opinion pieces).

¢) Papers lacking methodological detail or empirical
validation.

d) Duplicate publications or secondary reports of the
same study.

The PRISMA 2022 diagram outlines the process:

i. Identification: Initial searches across arXiv, IEEE
Xplore, PubMed, and conference proceedings (e.g.,
AAAI ICLR) yielded 78 records. After removing
10 duplicates, 68 unique studies were screened.

il. Screening: Titles and abstracts of these 68 studies
were assessed for relevance, resulting in 24 studies
excluded for failing to meet basic inclusion criteria.

iii. Eligibility: Full-text analysis of 44 studies was
conducted, excluding another 16 studies due to
methodological insufficiencies or misalignment
with neuro-symbolic reasoning.

iv. Included Studies: Ultimately, 28 high-quality
studies were included in the synthesis, covering
domains such as healthcare, visual reasoning,
robotics, and knowledge graphs, with datasets like
MIMIC-III, CLEVR, and Freebase, and evaluation
metrics including accuracy, Fl-score, and
interpretability scores.
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This transparent process ensured that only vetted and
relevant studies contributed to the findings of this review.
Table 1 summarizes the inclusion and exclusion criteria
used in picking reviewed works.

Table 1: Inclusion and exclusion criteria summary

Criterion Focus of Inclusions Focus of Exclusions

Population neuro-symbolic Al neural or symbolic Al
. Neuro-symbolic Non-integrative
Intervention  frameworks or
O approaches
applications
Any comparator, Irrelevant comparisons
Comparator  including non- or theoretical-only
comparative articles
Performance,
Outcomes scalability, Non-relevant outcomes
interpretability
Study Empirical or Single-case, qualitative,
) . . or conceptual-only
Design theoretical studies .
studies
Peer-reviewed in Non-peer-reviewed or
Other English (2017- non?En lish papers
2024) gisipap

This structured approach ensured that the review
included robust and relevant studies while maintaining a
high standard of scientific rigor. Ultimately, 28 studies met
the eligibility criteria and were included in the synthesis,
providing a comprehensive foundation for analysing neuro-
symbolic reasoning frameworks and their applications.

2.4 Quality Scoring: Assessing Risk of Bias

The quality and risk of bias of the 28 selected studies
were evaluated using a modified Newcastle-Ottawa Scale
(NOS) (Wells et al., 2000), tailored for the domain of neuro-
symbolic reasoning. This scoring framework assesses three
key dimensions: (a) the selection of the study group, (b) the
comparability of experimental setups, and (c) the rigor in
outcome ascertainment. For each study, a score from 0 to 9
was assigned, with thresholds defined as high risk (0-3),
medium risk (4-6), and low risk (7-9). Adjustments were
made to align the scale with the context of this review,
replacing terms such as "exposure" with "framework
design" and emphasizing criteria relevant to computational
systems. Figure 1 visualizes quality scores for 19 studies
discussed in detail, with the remaining 9 studies exhibiting
similar quality (scores 6—9) but omitted for brevity.
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Figure 1: Comparative quality scores of 19 discussed
studies in NSR review
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[27, 33] scored highest, while [31] and Jernsti and
Kordjamshidi (2024) scored lower, showing variability in
study quality. Specifically, the selection dimension
evaluated the representativeness of the datasets used, clarity
in experimental design, and relevance to neuro-symbolic
reasoning (4 stars maximum). Comparability examined the
use of appropriate baselines, including comparisons with
purely neural or symbolic systems (2 stars maximum).
Outcome ascertainment focused on the robustness of
evaluation metrics, empirical validation, and reporting
transparency (3 stars maximum). These refinements ensured
that the scoring system accounted for nuances in the
methodologies and applications of neuro-symbolic Al.

The assessment revealed that the majority of studies
scored between 6 and 9, indicating medium to low risk of
bias, with most demonstrating methodological rigor and
empirical grounding. Studies that scored lower often lacked
thorough validation or comparability benchmarks. Table 2
presents quality scores for 19 discussed studies, with the
remaining 9 studies scoring similarly (6-9, medium to low
risk) but not detailed due to space constraints.

Table 2: Quality scores of discussed studies

No Author(s) and Year Selection Comparability Outcome Ascertainment Total Score Risk Level

1 Yu et al. (2023) 4 2 3 9 Low

2 Gandhirajan (2025) 4 2 3 9 Low

3 Shindo et al. (2021) 4 2 3 9 Low

4 Liu et al. (2019) 4 2 3 9 Low

5 Feldstein et al. (2024) 3 2 3 8 Low

6 Verheyen et al. (2023) 4 1 3 8 Low

7 Chen et al. (2023) 4 2 2 8 Low

8 Subramanian et al. (2024) 3 2 3 8 Low

9 Marra and Kuzelka (2019) 3 2 3 8 Low
10 Hossain et al. (2025) 3 2 3 8 Low
11 Luo et al. (2024) 3 2 2 7 Low
12 Sun et al. (2024) 3 1 3 7 Low
13 Rubenstein et al. (2023) 4 1 2 7 Low
14 Qu and Tang (2019) 3 1 3 7 Low
15 Johnson et al. (2016) 3 2 2 7 Low
16 Premsri and Kordjamshidi (2024) 3 1 2 6 Medium
17 Werner (2024) 3 0 3 6 Medium
18 Nawaz et al. (2025) 3 1 2 6 Medium
19 Campero et al. (2018) 3 1 2 6 Medium

2.5 Article Collection and Analysis

The selection and synthesis of articles were performed
systematically to ensure methodological rigor and reduce
potential bias. All searches were conducted by the first
author, who reviewed the search results and shortlisted
articles based on their titles and abstracts for potential
inclusion (n = 68). The second author independently
reviewed the selection process to confirm adherence to the

https:/ /doi.org/10.53982 /ajeas.2025.0301.05-

eligibility criteria. Full texts of the shortlisted articles were
then appraised independently by both authors, who reached
a consensus on the final set of included studies. No
additional articles were identified through forward and
backward reference searches.

A structured data extraction table, inspired by prior
systematic reviews, was utilized to capture key study details,
including publication information (author, year, country),
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study design and setting, participant characteristics, findings. The synthesized data from the top 11 selected
methodologies, datasets, evaluation metrics, and study studies is presented in Table 3.

Table 3: Top 11 summary of studies on neuro-symbolic reasoning in Al systems
Author(s) and Study Design and  Participants/ Framework/

No Country Outcomes and Findings

Year Setting Data Methodology
Improved collision
Experimental study Simulated =~ SNCBFs — Neural avoidance, generalizing
1 Yuetal. (2023) USA on dynamic obstacle  autonomous networks + to 100x higher obstacle
avoidance systems probabilistic logic densities. Outperformed
RL and MPC methods.
Identified key integration
. Survey of Neuro- . . . .
Feldstein et al. . Literature Categorization of  strategies, improving
2 Canada Symbolic Al . . o
(2024) . analysis NeSy frameworks interpretability and
architectures .
adaptability.
Neuro-Symbolic 1.0\ 04 99 8% and
Procedural 99.2% accuracy on
Experimental study MNIST Dialog, Semantics — &7 aceuracy
Verheyen et al. . . . . MNIST Dialog and
3 Belgium  on visual dialogue CLEVR-Dialog Integrates memory- .
(2023) . . CLEVR-Dialog,
reasoning datasets based symbolic . .
; . respectively, surpassing
reasoning with
purely neural models.
neural networks
DiffLogic — Neuro- 7-12% higher accuracy
.. Freebase, . ..
Chen et al. . Empirical study on Symbolic than traditional
4 China WordNet, . .
(2023) knowledge graphs Reasoning embedding-based
ConceptNet
Framework methods.
End-to-End Neuro- Improved policy
Symbolic RL — interpretability and
. Experimental study ~ Nine Atari Structured .state learplng efﬁc1enp Y
5 Luoetal (2024)  China . representation + achieving superior
on explainable RL games . . .
symbolic policy performance in
learning + textual reinforcement learning
explanations tasks.
. . . . . Better task completion
Subramanian Hybrid reasoning for Robotics Logic and neural .
6 Italy ) . rates and error reduction
(2024) robotics datasets mix . .
in robotics systems.
Neural Probabilistic
Logic Learning  Achieved 90% success
Empirical study on Freebase, (NPLL) — rate in reasoning under
7 Sun et al. (2024) China knowledge graph WordNet,  Integrates Markov uncertainty,
reasoning YAGO datasets Logic Networks outperforming Bayesian
with neural networks.
embeddings
Neuro-Symbolic
Training Improved generalization
Premsri and Empirical study on Spatial Framework — to unobserved data and
8  Kordjamshidi USA spatial reasoning in reasoning Neural models +  enhanced performance
(2024) NLP benchmarks symbolic on spatial reasoning
constraints for tasks.
logical reasoning
Neuro-Symbolic 17% improvement in
ol sudyon  Logossle T dosmaner,
9  Werner (2024) USA knowledge graph knowledge . . ne e
. Combines symbolic  rate in probabilistic
reasoning graph datasets . . .
meta-rules with decision-making
neural embeddings simulations.
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No Auth‘(;:;gsz and Country StudySIe)t(;iSIllggn and Partch;):nts/ lfiiill:loe(;r)(l)ggf Outcomes and Findings
Improved speech-to-text
AudioPalLM — translation accuracy,
10 Rubenstein et al. USA Empirical study on ~ Multilingual Multimodal Neuro- outperforming traditional
(2023) speech processing speech datasets Symbolic Speech ASR models, particularly
Model in zero-shot translation
scenarios.
Probabilistic Logic
Neural Networks Improved logical
Qu and Tang China Empirical study on (pLogicNet) — consistency while
11 (2019) probabilistic logic for Knowledge Combines first-  reducing computational
graph datasets I . . . .
knowledge graphs order logic with inefficiency in reasoning
probabilistic tasks
modeling

3. NEURO-SYMBOLIC MECHANISM

Neuro-Symbolic Reasoning (NSR) integrates structured
symbolic representations with neural learning mechanisms,
creating systems that combine the interpretability of
symbolic logic with the adaptability of deep learning. The
central challenge in NSR is the seamless unification of
discrete symbolic reasoning with continuous statistical
learning, ensuring Al models can perform inference, adapt
to new data, and maintain logical consistency. This section
explores the theoretical underpinnings of NSR by analyzing
symbolic knowledge representation, neural learning
mechanisms, and hybrid integration strategies. These
formulations highlight the mathematical and logical
foundations essential for implementing NSR-based
architectures.

3.1 Document Symbolic Knowledge Representation and
Reasoning

Symbolic reasoning serves as the backbone of NSR by
providing a structured, rule-based framework that ensures
logical consistency in Al systems. Traditional Al systems
have long relied on symbolic representations to formalize
knowledge in structured formats such as ontologies, logic-
based inference, and probabilistic reasoning. The fusion of
these elements into NSR allows systems to operate in
domains requiring high interpretability while benefiting
from neural models’ ability to extract complex patterns.

Ontologies are among the most widely used methods for
structured knowledge representation, providing a
formalized system for defining domain concepts,
relationships, and axioms. According to [7], an ontology, O,
consists of a set of concepts C, relationships R, instances I,
and axioms A. Mathematically, O is represented in Equation

(1).

0 = (C,R,1,A) (1)

This representation allows Al models to infer logical
relationships among entities, ensuring that domain
knowledge remains interpretable. For instance, in plant
disease identification, an ontology-driven rule-based
inference system can encode relationships between
symptoms and possible diseases, improving the system’s
https:/ /doi.org/10.53982 / ajeas.2025.0301.05-]

ability to reason over structured datasets. [29] further
emphasize the role of ontologies in NSR, arguing that
structured representations enable Al models to integrate
expert knowledge, thereby reducing erroneous inferences.

Logical inference mechanisms in NSR extend the
capabilities of ontologies by providing structured
methodologies to derive new information from predefined
rules. First-Order Logic (FOL) enables Al systems to
formalize decision-making processes. A decision rule for
plant disease diagnosis, for example, can be formulated in
Equation (2).

vx: (Yellow Leaves(x) A Wilting(x)) —
Nitrogen Deficiency(x) 2)

Equation (2) implies that if a plant exhibits yellow leaves
and wilting, it is diagnosed with nitrogen deficiency. [6]
highlight that such logical structures provide essential
reasoning capabilities in NSR, ensuring that conclusions
derived from neural predictions are explainable and
logically sound. However, real-world data is often uncertain
or incomplete, requiring NSR systems to incorporate
probabilistic reasoning. [18] introduced neural Markov
logic networks (NMLNs), a statistical relational learning
system that models joint probability distributions without
relying on explicitly defined first-order logic rules, which
were traditionally used in Markov logic networks (MLNs).

Their results demonstrate significant advancements
compared to previous approaches, particularly in their
ability to learn an implicit representation of rules as neural
networks, thus providing enhanced flexibility and
performance across several tasks. The NMLN distribution
over a possible world ® can be formulated in Equation (3).

p(w) = . exp(SW, Deobaw¥)) (3)

where z is the normalization constant (partition function),
@ represents the set of potential functions (which are
implemented as neural networks), and ¢, ,,(y) denotes the
output of the neural network for a given fragment y of the
relational structure. [26] proposed the Neuro-Symbolic
Forward Reasoner (NSFR), a novel framework designed for
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complex object-centric reasoning tasks. This approach
combines differentiable forward-chaining using first-order
logic with neural-based object-centric learning models,
marking a significant advancement from traditional
reasoning methods, which often employed non-
differentiable techniques such as symbolic reasoning alone.

The flow diagram of the key operations and processes in
the Neuro-Symbolic Forward Reasoner (NSFR) is
represented in Figure 2.

[ Input Image Processing

— il

)
[ Fact Transformation ]
T
F Index Tensor Construction J
L
[ Compu'atlonal Graph Formation ]
L
[ Forward-Chaining Inference J
[
l

€L

Prediction Generation ]
T ks
Error Backpropagation and Learning ]
Figure 2: Flow diagram for neuro symbolic forward
reasoncr
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Reinforcement
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Neure-Symbolie
Frameworks

Differentiable
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This probabilistic framework enables NSR systems to

perform inference under uncertainty, allowing Al models to
assign confidence levels to predictions.

3.2 Neural Embeddings and Integration Strategies
Neural embeddings play a critical role in bridging the gap
between symbolic and sub-symbolic representations. By
converting raw data into continuous vector spaces, neural
embeddings enable NSR systems to process unstructured
inputs such as text, images, and audio while maintaining
compatibility with symbolic reasoning frameworks.
Integration strategies such as hybrid architectures, attention
mechanisms, and reinforcement learning algorithms are
employed to synchronize neural and symbolic components
effectively, ensuring robustness and scalability in diverse
applications [15]. Figure 3 presents a taxonomy of Neuro-
Symbolic Frameworks, categorizing them into different
approaches such as logic-based integration, differentiable
frameworks, procedural semantics, and reinforcement
learning integration. It further highlights representative
models and references to key studies in each category.

Logic-Based

Integration

Learning Integration Frameworks
Neuro-Symbolic RL ‘ ‘ Memory-Based ’ Sequential Neural Coutrol
(NS-RL) Ressoning Barrier Functious (SNCBFS)

Nero-Symbolic Forward DiffLogic
Reasoner (NSFR)

Neural Markov Logic

Networks (NMLN) Neral Networks (pLogicNet)

{ Probabilistic Logic

|

ot al. (207 erheven et al. (2023) . Chen et al. (2023) Marra et al. (202 { Tang (2019
[ Luo et al. (2024) } l Verheyen et al. (2023) y [ Yuetal. (4029 J [ Shindo et al. (2021 ] [ Marra et al. (2020) J [ Qu & Tang (2019) l

Figure 3. Taxonomy of neuro-symbolic frameworks

4. DISCUSSION AND FINDINGS

[33] contributed to the major frameworks and
methodologies in neuro-symbolic reasoning systems by
introducing Sequential Neural Control Barrier Functions
(SNCBFs), which integrated neural networks with control
barrier functions, a form of symbolic reasoning. Their
methodology enabled neural models to incorporate
structured, rule-based constraints, ensuring safe and
scalable robot navigation. When compared with traditional
approaches, empirical results demonstrated that SNCBFs
outperformed potential fields, end-to-end reinforcement
learning, and model-predictive control, particularly in high-
density obstacle environments. This supports the claim that
neuro-symbolic systems perform better than purely neural
or symbolic approaches, as they balance adaptability and
logical consistency. However, the study highlighted
scalability challenges, particularly the exponential
complexity of planning as obstacle density increased. [3]
https:/ /doi.org/10.53982 /ajeas.2025.0301.05-

addressed neuro-symbolic reasoning in knowledge graphs,
presenting DiffLogic, a differentiable neuro-symbolic
framework that integrated rule-based precision with neural
embeddings for scalable reasoning. As a methodology,
DiffLogic exemplified a hybrid neuro-symbolic approach
that effectively balanced accuracy and computational
efficiency. Empirical evaluations showed that DiffLogic
outperformed both traditional neural and symbolic models,
supporting the argument that hybrid models achieve
superior reasoning performance in structured data
environments. However, the study acknowledged
challenges in dynamic rule weighting and essential triple
selection, which remained limitations in deploying scalable
neuro-symbolic knowledge graphs. Future advancements,
as suggested by [3] involved refining rule-based weighting
mechanisms to enhance model adaptability across diverse,
large-scale datasets.
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[30] explored neuro-symbolic reasoning in visual
dialogue tasks, demonstrating how memory-based symbolic
reasoning combined with neural models enhanced Al-
driven conversations. Their methodology processed
incremental dialogue information, effectively managing
reasoning in long-form interactions. Performance
evaluations on MNIST Dialog and CLEVR-Dialog datasets
showed remarkable accuracies of 99.8% and 99.2%,
confirming that neuro-symbolic models can surpass purely
neural approaches in tasks requiring logical inference and
pattern recognition. However, scalability remained a key
limitation, and the study emphasized the need for
standardized evaluation benchmarks to compare different
neuro-symbolic reasoning systems. Future research in this
domain should focus on optimizing memory-efficient
symbolic representations and integrating multi-modal
dialogue reasoning frameworks. Figure 4 presents reported
performance metrics from selected neuro-symbolic studies,
highlighting accuracy and success rates across different
datasets.
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Figure 4: Performance metrics on selected neuro-symbolic
studies

[30] achieved the highest scores on MNIST (99.8%) and
CLEVR (99.2%), while [28] (90.0%) and [2] (88.0%)
reported lower performances, reflecting variability in
outcomes across studies. [14] introduced a neuro-symbolic
reinforcement learning (NS-RL) framework designed to
improve explainability and structured policy learning. Their
end-to-end NS-RL model incorporated a perception module
for structured state representation, a symbolic policy
learning module, and a policy explanation module powered
by GPT-4 to generate textual justifications for decisions.
Empirical results from experiments on nine Atari tasks
confirmed that NS-RL significantly improved both policy
interpretability and learning efficiency. This work
demonstrates that neuro-symbolic reinforcement learning
outperforms purely neural RL models by enhancing both
transparency and decision-making accuracy.

[28] introduced Neural Probabilistic Logic Learning
(NPLL), a probabilistic reasoning framework that integrated
neural networks with probabilistic logic for knowledge
graph reasoning. Their approach leveraged Markov Logic
Networks (MLNs) with variational inference to improve
https:/ /doi.org/10.53982 /ajeas.2025.0301.05-
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structured reasoning while maintaining model simplicity.
NPLL achieved a 90% success rate in reasoning under
uncertainty, significantly outperforming baseline Bayesian
networks. This study aligned with the first research question
by exemplifying a hybrid neuro-symbolic framework that
enhanced structured inference in Al systems. Additionally,
it addressed the second research question by empirically
demonstrating that neuro-symbolic models outperform
purely neural or symbolic approaches in knowledge graph
reasoning tasks.

[21] presented Probabilistic Logic Neural Networks
(pLogicNet), a framework that integrated first-order logic
rules with probabilistic reasoning to improve knowledge
graph inference. Unlike NPLL, which optimized reasoning
via variational inference, pLogicNet defined a joint
probability distribution over knowledge graph triplets using
Markov Logic Networks. Their results indicated that
pLogicNet improved logical consistency while reducing
computational inefficiency, demonstrating that probabilistic
logic, when combined with neural networks, enhances Al’s
ability to reason over complex structured data. This work
answered the third research question, as it highlighted the
challenges of scalability in neuro-symbolic Al, emphasizing
the need for more efficient rule selection and probabilistic
modelling.

[20] introduced a neuro-symbolic training framework
designed to enhance spatial reasoning over textual
descriptions. This methodology integrates neural language
models with symbolic reasoning constraints, compelling the
models to adhere to logical rules during training. By
embedding these constraints, the framework aims to
improve the abstraction capabilities of language models,
thereby enhancing their generalizability and facilitating
effective transfer learning across different domains. Their
empirical evaluations demonstrated that their neuro-
symbolic approach outperforms traditional neural models
on various spatial reasoning benchmarks. The integration of
symbolic constraints enabled the models to generalize more
effectively to unobserved and complex input compositions,
addressing limitations observed in purely neural approaches.

This finding underscores the potential of neuro-symbolic
systems to surpass the performance of standalone neural or
symbolic models in tasks requiring intricate reasoning.
Werner (2024) introduced a neuro-symbolic integration
framework aimed at enhancing reasoning and learning over
knowledge graphs. This approach combines symbolic meta-
rules with knowledge graph embedding methods,
representing entities and relations in a low-dimensional
vector space. The integration of symbolic reasoning with
neural embeddings seeks to improve the reliability,
interpretability, data efficiency, and robustness of
knowledge graph completion tasks. Empirical results
demonstrated that this neuro-symbolic method achieved a
17% improvement in decision accuracy under probabilistic
conditions, with an overall success rate of 95% in
simulations, outperforming traditional Bayesian classifiers.
This finding underscores the potential of integrating
symbolic reasoning with neural networks to enhance
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decision-making processes in Al systems. Figure 5
illustrates the percentage improvement or reduction
achieved by different studies compared to baseline methods,
providing a comparative assessment of performance gains.
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Figure 5: Improvement over baselines in neuro-symbolic
vs hybrid approaches

From Figure 5, Chen et al. reported modest
improvements of 9.5%, while Werner (2024) achieved
17.0%. Notably, [13] demonstrated a substantial
improvement of nearly 47%, highlighting the effectiveness
of their approach relative to others. [24] introduced
AudioPalLM, a large language model designed to process
and generate both text and speech by integrating PaLM-2, a
text-based language model, with AudioLM, a speech-based
model. This neuro-symbolic framework unifies text and
speech modalities, leveraging symbolic language models
with neural speech models to enhance multimodal language
processing.  Empirical  results demonstrated that
AudioPalLM outperformed traditional speech translation
models, particularly in zero-shot scenarios, where it
successfully translated languages, it had not been trained on.
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This reinforces the argument that neuro-symbolic
systems, which combine neural networks with symbolic
reasoning, can surpass purely neural or symbolic
approaches, particularly in tasks that require multimodal
integration. Overall, their findings provide strong evidence
that hybrid neuro-symbolic models can improve reasoning
and decision-making in Al, particularly in complex,
multimodal environments. Frameworks used in NSR
systems are dictated by the application domain. [22] in their
work on Simulation of smart city systems, used the
distributed reasoning approach while [30] used the
ontology-based reasoning for Cross-domain application
tests. The hybrid frameworks such as Logic-NN integration,
Bayesian neuro-symbolic and Speech-symbolic reasoning
are also being deployed on a case-based situation.

5. SUMMARY

This review explored neuro-symbolic systems, analyzing
28 high-quality studies to highlight their successes,
applications, challenges, and future directions. Evidence
shows that NSR-Systems outperform standalone Neural
Network Systems. In section 3, we evaluated the
combination of Neural Networks with probabilistic
reasoning, which effectively quantified the likelihood of
disease given plant symptoms, improving decision-making.

[18] found that Neural Markov Logic Networks (NMLN-
K3) outperformed purely neural systems like Neural Tensor
Prover (NTP), Greedy Neural Tensor Prover (G-NTP), and
Contextual Tensor Prover (CTP) in various tasks. Similarly,
[26] demonstrated that NSFR effectively handles complex
spatial and relational reasoning tasks, outperforming prior
state-of-the-art models in both logical and deep learning
categories. Specifically, NSFR showcases higher accuracy
in classifying intricate patterns within 2D and 3D datasets,
surpassing conventional neural-based approaches in image
recognition tasks. The results from their work are presented
in Table 4.

Table 4: Result of NMLN-K3 compared against pure neural systems [18, 26]

Knowledge e Accurac Accurac
Model Base g Description (Datase g (Value)y Type
Nations High performance in reasoning
NMLN- Kinship’ tasks, such as geographic and WNI1, 74.4%, Neuro-symbolic
K3 ’ familial relations, medical FBI13 84.7%
UMLS
concepts
Ngtlogs, Neural Tensor Prover for WNI11, 53.0%,
NTP Kinship, reasoning tasks FB13 75.2% Purely neural
UMLS ’
G-NTP E?r:ls(l):;i Greedy Neural Tensor Prover WNI11, 75.9‘;/0, Purely neural
UMLS for reasoning tasks FB13 81.5%
Ngtlops, Contextual Tensor Prover for WNI11, 86.4%,
CTP Kinship, reasoning tasks FB13 89.1% Purely neural
UMLS '
Nations Effecti\{e in geog.rgphic Nc.:u.ro-symbolic
NSFR Kinship’ r.elathns, familial . WNI11, 95%. 92% (f:ombmlng neural-bas.ed
UMLS ’ relationships, and medical FB13 ’ inference and symbolic

concepts

logic reasoning)
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3.3 Future Directions

Neuro-symbolic  reasoning (NSR) faces critical
challenges that require focused research to advance its
capabilities. A primary issue is the opacity of neural
networks, often regarded as black boxes, particularly in
domains like healthcare where transparent decision-making
is essential [12]. Integrating Internet of Things (IoT) and
real-time sensor data with NSR models presents further
complexity due to the multimodal nature of data, including
images, text, and audio. Current NSR systems struggle to
generalize to unseen data distributions and adapt to dynamic
environments, limiting their robustness and accuracy [16].
Additionally, the potential of NSR in sustainable agriculture
remains underexplored, with opportunities to enhance food
engineering, plant classification, and diagnosis through Al-
driven insights [1, 8, 10].

This is further exemplified by [8], who demonstrate the
practical application of NeSy in remote sensing for forest
inventory tasks, showing that their framework outperforms
traditional deep learning models by up to two F1 points for
crown delineation and three for species classification. Their
use of semantic-based regularization to incorporate
ecological domain knowledge addresses key challenges
identified in this review, such as explainability and
generalization to irregular data like mixed pixels and dense
forests, while mitigating the “black box” nature of neural
models through differentiable fuzzy first-order logic rules.
This work supports the proposed NeSyBench by
highlighting the need for benchmarks integrating
multimodal datasets, such as remote sensing data combined
with synthetic 3D scenes inspired by CLEVR, to enhance
robustness in biodiversity and conservation applications,
reinforcing the review’s emphasis on NeSy’s potential for
scalable, interpretable Al in environmental engineering.
Computational overhead and scalability also pose
significant hurdles, necessitating techniques like temporal
decomposition to optimize performance in applications
such as autonomous driving and robotic surgery [33].
Refining the balance between rule-based and embedding-
based components [3] and improving symbolic
generalization [14] are essential for developing scalable and
efficient NSR systems.

To address the absence of standardized evaluation
benchmarks in NSR, as evidenced by diverse performance
metrics (see Figure 4), we propose NeSyBench, a cross-
domain benchmark suite for evaluating NSR frameworks
across visual reasoning, knowledge graph reasoning, natural

language processing, reinforcement learning, and healthcare.

NeSyBench integrates tasks from datasets such as CLEVR
[11], Freebase, WordNet, ConceptNet, Atari games, and
MIMIC-III [5], using standardized metrics: accuracy, F1-
score, success rate, interpretability score (1-5 scale, as in
[5]), and computational efficiency. This suite enables direct
comparisons of frameworks like pLogicNet, DiffLogic,
NSFR, and NS-RL, addressing variability in study quality
(see Figure 4). A scalability test suite will assess
computational overhead under increasing data complexity,
such as obstacle density in robotics [33] or knowledge graph

https:/ /doi.org/10.53982 /ajeas.2025.0301.05-
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size [3], building on improvements over baselines
[improvements over baselines.png]. An explainability

benchmark, inspired by Gandhirajan (2025), will quantify
textual and symbolic explanation quality. NeSyBench will
be hosted in an open-access repository with datasets,
evaluation scripts, and baseline results to ensure
accessibility and reproducibility.

To unify evaluation across NSR domains, we propose
NeSyHybridBench, a synthetic and hybrid dataset suite
combining elements from CLEVR, CLEVR-Dialog,
Freebase, WordNet, ConceptNet, YAGO, Atari games,
MIMIC-III, and spatial reasoning benchmarks.
NeSyHybridBench includes cross-domain tasks, such as
visual-knowledge graph integration (e.g., querying spatial
relations linked to Freebase entities) and NLP-RL hybrids
(e.g., textual constraints in Atari-like environments), with
10,000-50,000 scalable samples per domain. Generated
using procedural tools for controlled variations and ground-
truth symbolic annotations, it supports explainability and
logical inference, aligning with frameworks like DifflLogic
and NS-RL. Hosted on platforms like Hugging Face,
NeSyHybridBench will enable reproducible evaluations
and community contributions. To standardize evaluation
frameworks, we propose NeSyEval, comprising:

1. Core Metrics: Accuracy, Fl-score, success rate,
interpretability scores (1-5, via expert ratings or
automated coherence metrics), and
runtime/memory usage;

il. Comparative Baselines: Evaluations against pure

neural (e.g., transformers), symbolic (e.g., Markov

Logic Networks), and hybrid models, as
demonstrated by [3, 14]
iii. Validation Protocols: Cross-validation on unseen

NeSyHybridBench distributions, with blinded
assessments for domain-specific tasks (e.g.,
clinician preferences, [5]); and

iv. Reporting Standards: Open-source scripts for
reproducibility, including ablation studies on
symbolic integration (e.g., probabilistic logic in
pLogicNet). NeSyEval, paired with NeSyBench

and NeSyHybridBench, provides measurable
criteria to enhance NSR scalability and
interpretability.

Advancing unified models like AudioPaLM requires
integrating diverse modalities and large-scale datasets [24].
Future research should prioritize advanced training
techniques, improved resource allocation, and extended
zero-shot learning capabilities across languages and tasks.
By addressing these challenges through targeted research,
NSR can achieve greater applicability and effectiveness
across diverse domains.
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