
ABUAD Journal of Engineering and Applied Sciences (AJEAS) 
 

ISSN: 2992-5584 
 

Volume 3, Issue 1, 36-47 

https://doi.org/10.53982/ajeas.2025.0301.05-j    36 

 

 

 

Neuro-Symbolic Reasoning: Performance, 

Challenges, and Benchmarks: A Systematic 

Literature Review 
 

Peter Godfrey OBIKE1, Patience Usoro USIP2, Edward Ndarake UDO3, Aniekan Joe ANANGA4 
 

1Department of Computer Science, Michael Okpara University of Agriculture, Umudike, Nigeria 
2,3,4Department of Computer Science, University of Uyo, Uyo, Nigeria 

 
obike.peter@mouau.edu.ng, patienceusip@uniuyo.edu.ng, edwardudo@uniuyo.edu.ng, 

aniekanatnet@gmail.com   
 

Correspondence: obike.peter@mouau.edu.ng; Tel.: +2348034185981 
 

Date Submitted: 07/04/2025 

Date Accepted:  27/05/2025   

Date Published: 30/06/2025   

 

Abstract: Traditional AI struggles with interpretability and 

generalisation in complex reasoning tasks, limiting its 

effectiveness in domains like healthcare and robotics. This 

systematic review aims to evaluate Neuro-Symbolic Reasoning 

(NeSy) frameworks, which integrate symbolic reasoning with 

neural networks to address these challenges. 28 empirical studies 

(2017–2024) were analysed from arXiv, IEEE Xplore, PubMed, 

and conferences, using a PRISMA-guided methodology with 

inclusion criteria focusing on NeSy frameworks, performance, and 

scalability. Results show NeSy systems achieve a mean accuracy 

of 93.00% (SD 5.35%) across visual reasoning, NLP, robotics, and 

healthcare, outperforming neural baselines by 26.00% on average 

(SD 18.29%). Methodologies like pLogicNet, DiffLogic, and NSFR 

enhance generalisation, e.g., in spatial reasoning tasks. However, 

computational inefficiencies and explainability gaps persist (mean 

quality score 7.53/9, SD 1.04). NeSyBench, using datasets like 

MIMIC-III and CLEVR, and NeSyEval for standardised metrics 

(accuracy, F1-score, interpretability), was proposed to refine 

NeSy systems. This review provides a roadmap for developing 

interpretable, scalable AI, advancing applications in diagnostics 

and autonomous systems.  

 
Keywords: Neuro-symbolic reasoning, artificial intelligence, 

probabilistic logic neural networks, explainability, benchmarks. 

 

1. INTRODUCTION 

The quest for robust artificial intelligence (AI) has long 

been shaped by the tension between symbolic and 

connectionist paradigms. Early symbolic AI, rooted in the 

physical symbol system hypothesis and championed by 

thinkers like John McCarthy, emphasized logic and rule-

based reasoning, offering transparency but struggling with 

adaptability to noisy, real-world data. In contrast, the rise of 

neural networks and connectionist approaches enabled 

powerful pattern recognition, driving breakthroughs in 

natural language processing, computer vision, and decision-

making [15, 25]. However, traditional neural models often 

function as “black boxes”, lacking interpretability, 

struggling with symbolic reasoning, and facing difficulties 

in generalizing to tasks requiring structured, multi-step 

inference [6, 23]. 

These limitations have spurred the development of 

neuro-symbolic reasoning (NeSy), an interdisciplinary 

approach that integrates statistical learning with structured 

reasoning to combine the strengths of both paradigms [32]. 

NeSy frameworks enhance AI systems’ ability to perform 

logical inference, improve explainability, and generalize 

across complex tasks, as demonstrated by their superior 

performance in domains like visual dialogue and knowledge 

graph reasoning (see Figure 1). For example, [33] applied 

probabilistic logic to neural models for scalable dynamic 

obstacle avoidance in robotics, showcasing real-time 

decision-making capabilities. Similarly, [3] introduced 

DiffLogic, a differentiable framework blending rule-based 

and embedding-based techniques for knowledge graph 

reasoning, achieving 7–12% accuracy improvements over 

baselines (see Figure 5). 

The motivation for this systematic review stems from the 

growing adoption of NeSy frameworks across diverse 

applications, including visual understanding, natural 

language interactions, and reinforcement learning, as 

evidenced by the high-quality studies evaluated in Figure 5. 

Research indicates that NeSy systems can outperform 

purely neural or symbolic approaches in reasoning-

intensive tasks, such as [30] procedural semantics 

framework, which achieved near-perfect accuracies in 

visual dialogue tasks as shown in Figure 4. However, NeSy 

remains an emerging field facing challenges like 

computational inefficiencies, limited explainability, and the 

absence of standardized evaluation benchmarks, which 

hinders consistent performance comparisons across 

frameworks like pLogicNet, DiffLogic, and NSFR [4]. 
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This review aims to provide a comprehensive analysis of 

the NeSy landscape by categorizing key frameworks, 

assessing their performance across varied use cases, and 

identifying research gaps. A particular focus is placed on 

applications like knowledge graph reasoning and visual 

dialogue, where NeSy approaches excel, and on addressing 

the need for standardized benchmarks, as proposed with 

NeSyBench later in this manuscript. Despite their promise, 

NeSy systems often face limitations, such as computational 

intensity and reasoning shortcuts that undermine 

explainability [19]. By critically evaluating these aspects, 

this review seeks to highlight the state of the art and inspire 

advancements in scalable, interpretable, and efficient NeSy 

systems. 

 

2. METHODOLOGY 

This systematic review employs a PRISMA-guided 

methodology to evaluate Neuro-Symbolic Reasoning (NeSy) 

frameworks, focusing on their performance, interpretability, 

and scalability across diverse domains and datasets. 

 

2.1 Research Questions 

This systematic review aims to explore the state of neuro-

symbolic reasoning in AI systems by addressing the 

following research questions: 

i. What are the major frameworks and 

methodologies used in neuro-symbolic reasoning 

systems? 

ii. How do neuro-symbolic systems perform 

compared to purely neural or symbolic approaches 

across various application domains? 

iii. What are the key challenges and limitations in the 

design and deployment of neuro-symbolic systems? 

iv. What future directions and opportunities exist for 

advancing neuro-symbolic reasoning in AI? 
 

These questions guide the review’s focus on frameworks, 

applications, performance evaluation, and gaps in the 

current research landscape. 

 

2.2 Search Strategy 

To ensure a comprehensive and systematic review of the 

literature, a detailed search strategy was designed and 

implemented across multiple academic databases and 

repositories. The databases searched included SpringerLink, 

IEEE Xplore, and PubMed, which offer access to peer-

reviewed journal articles, conference proceedings, and 

technical reports. Additionally, the open-access repository 

arXiv was used to capture emerging research and preprints. 

Together, these sources provided a balanced representation 

of established findings and innovative developments in 

neuro-symbolic AI. 

Keywords and search strings were crafted to encompass 

the core themes of the review, such as “neuro-symbolic AI”, 

“neuro-symbolic reasoning”, “symbolic AI integration”, 

and “AI reasoning frameworks”. Boolean operators (e.g., 

AND, OR, NOT) and wildcard symbols were strategically 

used to refine the search results, ensuring a focus on the 

intersection of neural and symbolic methodologies. For 

instance, a search string like “(neuro-symbolic AND 

reasoning) OR (symbolic AI AND neural networks)” was 

employed to maximize relevance. 

The search was constrained to publications in English 

and spanned the years 2017 to 2024 to capture the most 

recent advancements in the field. Duplicates were removed 

during the initial screening process. Citation tracking was 

used to identify additional relevant studies by examining the 

reference lists of selected papers. Manual searches of key 

journals and conference proceedings, such as those from the 

AAAI Conference on Artificial Intelligence and the 

International Conference on Learning Representations 

(ICLR), were also conducted to fill potential gaps left by 

database queries. 

The results from the database searches were organized 

and screened using a systematic workflow. Titles and 

abstracts were reviewed to eliminate irrelevant studies, 

followed by a full-text analysis of selected articles to 

confirm their inclusion based on predefined criteria. This 

iterative process ensured a rigorous and exhaustive 

identification of relevant literature for this review. The 

search yielded 28 high-quality studies addressing neuro-

symbolic reasoning frameworks, their performance across 

domains like healthcare, visual reasoning, and robotics, and 

challenges such as scalability and explainability. These 

studies utilized diverse datasets (e.g., MIMIC-III, CLEVR, 

Freebase) and evaluation metrics (e.g., accuracy, F1-score, 

interpretability scores), aligning with the review’s research 

questions on frameworks, performance, and limitations. 

Representative studies identified through this process 

include those by [5], who designed a neurosymbolic XAI 

framework for differential diagnosis by integrating 

ClinicalBERT with ontology-driven reasoning to improve 

both accuracy and interpretability in clinical decision 

support. Using 15,000 patient records from the MIMIC-III 

database, the framework achieved an accuracy of 0.86, F1-

score of 0.83, explainability score of 4.5/5, and a calibration 

error of 0.03, outperforming subsymbolic and symbolic 

baselines. Clinicians preferred its explanations in 83% of 

cases, validating its effectiveness in healthcare settings. 

[9] conducted a systematic review of 2,280 articles, 

screened to 41 biomedical-relevant studies, to explore 

neuro-symbolic AI in healthcare. Their analysis of datasets 

and models like Logic Tensor Networks (LTN) and 

DeepProbLog highlighted NeSy’s promise in diagnostics 

and drug discovery, with superior accuracy and 

interpretability compared to traditional deep neural 

networks and transformers. 

[17] reviewed neuro-symbolic AI across domains like 

healthcare, finance, and IoT, examining models such as 

LTNs and Neural Theorem Provers. Their findings 

emphasized NeSy’s strengths in interpretability and 

reasoning but noted challenges in scalability and 

multimodal data integration, underscoring the need for 

standardized evaluation frameworks. 

[13] proposed a hybrid machine learning approach for 

cerebral stroke prediction using 43,400 samples from 
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HealthData.gov. Their model, combining missing value 

imputation, PCA, K-means, and automated hyperparameter 

optimization, reduced false negatives by 51.5% with 71.6% 

accuracy, outperforming methods like Random Forest and 

XGBoost. 

[11] introduced CLEVR, a diagnostic dataset for visual 

question answering, using synthetic 3D scenes to evaluate 

reasoning abilities. CLEVR’s focus on compositional 

reasoning and controlled attributes revealed weaknesses in 

VQA models, making it a key benchmark for neuro-

symbolic systems. 

 

2.3 Inclusion and Exclusion Criteria 

The inclusion and exclusion criteria for the study 

selection process were applied systematically to ensure 

relevance and quality. This process is visually summarized 

using a PRISMA 2022 flow diagram. The following 

describes the key criteria: 

 

Inclusion Criteria: 

a) Studies focused explicitly on neuro-symbolic 

reasoning systems or frameworks. 

b) Papers presenting novel methodologies, 

benchmarks, or applications in neuro-symbolic AI. 

c) Research evaluating performance, scalability, or 

interpretability of neuro-symbolic systems. 

d) Publications in English, dated between 2017 and 

2024. 

 

Exclusion Criteria: 

a) Studies unrelated to neuro-symbolic reasoning or 

focusing solely on neural or symbolic AI. 

b) Non-peer-reviewed materials (e.g., blog posts, 

opinion pieces). 

c) Papers lacking methodological detail or empirical 

validation. 

d) Duplicate publications or secondary reports of the 

same study. 

 

The PRISMA 2022 diagram outlines the process: 

i. Identification: Initial searches across arXiv, IEEE 

Xplore, PubMed, and conference proceedings (e.g., 

AAAI, ICLR) yielded 78 records. After removing 

10 duplicates, 68 unique studies were screened. 

ii. Screening: Titles and abstracts of these 68 studies 

were assessed for relevance, resulting in 24 studies 

excluded for failing to meet basic inclusion criteria. 

iii. Eligibility: Full-text analysis of 44 studies was 

conducted, excluding another 16 studies due to 

methodological insufficiencies or misalignment 

with neuro-symbolic reasoning. 

iv. Included Studies: Ultimately, 28 high-quality 

studies were included in the synthesis, covering 

domains such as healthcare, visual reasoning, 

robotics, and knowledge graphs, with datasets like 

MIMIC-III, CLEVR, and Freebase, and evaluation 

metrics including accuracy, F1-score, and 

interpretability scores. 

 

This transparent process ensured that only vetted and 

relevant studies contributed to the findings of this review. 

Table 1 summarizes the inclusion and exclusion criteria 

used in picking reviewed works. 
 

Table 1: Inclusion and exclusion criteria summary 

Criterion Focus of Inclusions Focus of Exclusions 

Population neuro-symbolic AI neural or symbolic AI 

Intervention 

Neuro-symbolic 

frameworks or 

applications 

Non-integrative 

approaches 

Comparator 

Any comparator, 

including non-

comparative 

Irrelevant comparisons 

or theoretical-only 

articles 

Outcomes 

Performance, 

scalability, 

interpretability 

Non-relevant outcomes 

Study 

Design 

Empirical or 

theoretical studies 

Single-case, qualitative, 

or conceptual-only 

studies 

Other 

Peer-reviewed in 

English (2017–

2024) 

Non-peer-reviewed or 

non-English papers 

 

This structured approach ensured that the review 

included robust and relevant studies while maintaining a 

high standard of scientific rigor. Ultimately, 28 studies met 

the eligibility criteria and were included in the synthesis, 

providing a comprehensive foundation for analysing neuro-

symbolic reasoning frameworks and their applications. 

 

2.4 Quality Scoring: Assessing Risk of Bias 

The quality and risk of bias of the 28 selected studies 

were evaluated using a modified Newcastle-Ottawa Scale 

(NOS) (Wells et al., 2000), tailored for the domain of neuro-

symbolic reasoning. This scoring framework assesses three 

key dimensions: (a) the selection of the study group, (b) the 

comparability of experimental setups, and (c) the rigor in 

outcome ascertainment. For each study, a score from 0 to 9 

was assigned, with thresholds defined as high risk (0–3), 

medium risk (4–6), and low risk (7–9). Adjustments were 

made to align the scale with the context of this review, 

replacing terms such as "exposure" with "framework 

design" and emphasizing criteria relevant to computational 

systems. Figure 1 visualizes quality scores for 19 studies 

discussed in detail, with the remaining 9 studies exhibiting 

similar quality (scores 6–9) but omitted for brevity. 
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Figure 1: Comparative quality scores of 19 discussed 

studies in NSR review 

[27, 33] scored highest, while [31] and Jernsti and 

Kordjamshidi (2024) scored lower, showing variability in 

study quality. Specifically, the selection dimension 

evaluated the representativeness of the datasets used, clarity 

in experimental design, and relevance to neuro-symbolic 

reasoning (4 stars maximum). Comparability examined the 

use of appropriate baselines, including comparisons with 

purely neural or symbolic systems (2 stars maximum). 

Outcome ascertainment focused on the robustness of 

evaluation metrics, empirical validation, and reporting 

transparency (3 stars maximum). These refinements ensured 

that the scoring system accounted for nuances in the 

methodologies and applications of neuro-symbolic AI. 

The assessment revealed that the majority of studies 

scored between 6 and 9, indicating medium to low risk of 

bias, with most demonstrating methodological rigor and 

empirical grounding. Studies that scored lower often lacked 

thorough validation or comparability benchmarks. Table 2 

presents quality scores for 19 discussed studies, with the 

remaining 9 studies scoring similarly (6–9, medium to low 

risk) but not detailed due to space constraints.

 

Table 2: Quality scores of discussed studies 

No Author(s) and Year Selection Comparability Outcome Ascertainment Total Score Risk Level 

1 Yu et al. (2023) 4 2 3 9 Low 

2 Gandhirajan (2025) 4 2 3 9 Low 

3 Shindo et al. (2021) 4 2 3 9 Low 

4 Liu et al. (2019) 4 2 3 9 Low 

5 Feldstein et al. (2024) 3 2 3 8 Low 

6 Verheyen et al. (2023) 4 1 3 8 Low 

7 Chen et al. (2023) 4 2 2 8 Low 

8 Subramanian et al. (2024) 3 2 3 8 Low 

9 Marra and Kuzelka (2019) 3 2 3 8 Low 

10 Hossain et al. (2025) 3 2 3 8 Low 

11 Luo et al. (2024) 3 2 2 7 Low 

12 Sun et al. (2024) 3 1 3 7 Low 

13 Rubenstein et al. (2023) 4 1 2 7 Low 

14 Qu and Tang (2019) 3 1 3 7 Low 

15 Johnson et al. (2016) 3 2 2 7 Low 

16 Premsri and Kordjamshidi (2024) 3 1 2 6 Medium 

17 Werner (2024) 3 0 3 6 Medium 

18 Nawaz et al. (2025) 3 1 2 6 Medium 

19 Campero et al. (2018) 3 1 2 6 Medium 

2.5 Article Collection and Analysis 

The selection and synthesis of articles were performed 

systematically to ensure methodological rigor and reduce 

potential bias. All searches were conducted by the first 

author, who reviewed the search results and shortlisted 

articles based on their titles and abstracts for potential 

inclusion (n = 68). The second author independently 

reviewed the selection process to confirm adherence to the 

eligibility criteria. Full texts of the shortlisted articles were 

then appraised independently by both authors, who reached 

a consensus on the final set of included studies. No 

additional articles were identified through forward and 

backward reference searches. 

A structured data extraction table, inspired by prior 

systematic reviews, was utilized to capture key study details, 

including publication information (author, year, country), 

https://doi.org/10.53982/ajeas.2025.0301.05-j
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study design and setting, participant characteristics, 

methodologies, datasets, evaluation metrics, and study 

findings. The synthesized data from the top 11 selected 

studies is presented in Table  3.

 

Table 3: Top 11 summary of studies on neuro-symbolic reasoning in AI systems 

No 
Author(s) and 

Year 
Country 

Study Design and 

Setting 

Participants/ 

Data 

Framework/ 

Methodology 
Outcomes and Findings 

1 Yu et al. (2023) USA 

Experimental study 

on dynamic obstacle 

avoidance 

Simulated 

autonomous 

systems 

SNCBFs – Neural 

networks + 

probabilistic logic 

Improved collision 

avoidance, generalizing 

to 100x higher obstacle 

densities. Outperformed 

RL and MPC methods. 

2 
Feldstein et al. 

(2024) 
Canada 

Survey of Neuro-

Symbolic AI 

architectures 

Literature 

analysis 

Categorization of 

NeSy frameworks 

Identified key integration 

strategies, improving 

interpretability and 

adaptability. 

3 
Verheyen et al. 

(2023) 
Belgium 

Experimental study 

on visual dialogue 

reasoning 

MNIST Dialog, 

CLEVR-Dialog 

datasets 

Neuro-Symbolic 

Procedural 

Semantics – 

Integrates memory-

based symbolic 

reasoning with 

neural networks 

Achieved 99.8% and 

99.2% accuracy on 

MNIST Dialog and 

CLEVR-Dialog, 

respectively, surpassing 

purely neural models. 

4 
Chen et al. 

(2023) 
China 

Empirical study on 

knowledge graphs 

Freebase, 

WordNet, 

ConceptNet 

DiffLogic – Neuro-

Symbolic 

Reasoning 

Framework 

7–12% higher accuracy 

than traditional 

embedding-based 

methods. 

5 Luo et al. (2024) China 
Experimental study 

on explainable RL 

Nine Atari 

games 

End-to-End Neuro-

Symbolic RL – 

Structured state 

representation + 

symbolic policy 

learning + textual 

explanations 

Improved policy 

interpretability and 

learning efficiency, 

achieving superior 

performance in 

reinforcement learning 

tasks. 

6 
Subramanian 

(2024) 
Italy 

Hybrid reasoning for 

robotics 

Robotics 

datasets 

Logic and neural 

mix 

Better task completion 

rates and error reduction 

in robotics systems. 

7 Sun et al. (2024) China 

Empirical study on 

knowledge graph 

reasoning 

Freebase, 

WordNet, 

YAGO datasets 

Neural Probabilistic 

Logic Learning 

(NPLL) – 

Integrates Markov 

Logic Networks 

with neural 

embeddings 

Achieved 90% success 

rate in reasoning under 

uncertainty, 

outperforming Bayesian 

networks. 

8 

Premsri and 

Kordjamshidi 

(2024) 

USA 

Empirical study on 

spatial reasoning in 

NLP 

Spatial 

reasoning 

benchmarks 

Neuro-Symbolic 

Training 

Framework – 

Neural models + 

symbolic 

constraints for 

logical reasoning 

Improved generalization 

to unobserved data and 

enhanced performance 

on spatial reasoning 

tasks. 

9 Werner (2024) USA 

Empirical study on 

knowledge graph 

reasoning 

Large-scale 

knowledge 

graph datasets 

Neuro-Symbolic 

Integration 

Framework – 

Combines symbolic 

meta-rules with 

neural embeddings 

17% improvement in 

decision accuracy, 

achieving a 95% success 

rate in probabilistic 

decision-making 

simulations. 
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No 
Author(s) and 

Year 
Country 

Study Design and 

Setting 

Participants/ 

Data 

Framework/ 

Methodology 
Outcomes and Findings 

10 
Rubenstein et al. 

(2023) 
USA 

Empirical study on 

speech processing 

Multilingual 

speech datasets 

AudioPaLM – 

Multimodal Neuro-

Symbolic Speech 

Model 

Improved speech-to-text 

translation accuracy, 

outperforming traditional 

ASR models, particularly 

in zero-shot translation 

scenarios. 

11 

Qu and Tang 

(2019) 

 

China 

 

 

Empirical study on 

probabilistic logic for 

knowledge graphs 

Knowledge 

graph datasets 

Probabilistic Logic 

Neural Networks 

(pLogicNet) – 

Combines first-

order logic with 

probabilistic 

modeling 

Improved logical 

consistency while 

reducing computational 

inefficiency in reasoning 

tasks 

3. NEURO-SYMBOLIC MECHANISM 

Neuro-Symbolic Reasoning (NSR) integrates structured 

symbolic representations with neural learning mechanisms, 

creating systems that combine the interpretability of 

symbolic logic with the adaptability of deep learning. The 

central challenge in NSR is the seamless unification of 

discrete symbolic reasoning with continuous statistical 

learning, ensuring AI models can perform inference, adapt 

to new data, and maintain logical consistency. This section 

explores the theoretical underpinnings of NSR by analyzing 

symbolic knowledge representation, neural learning 

mechanisms, and hybrid integration strategies. These 

formulations highlight the mathematical and logical 

foundations essential for implementing NSR-based 

architectures. 
 

3.1 Document Symbolic Knowledge Representation and 

Reasoning 

Symbolic reasoning serves as the backbone of NSR by 

providing a structured, rule-based framework that ensures 

logical consistency in AI systems. Traditional AI systems 

have long relied on symbolic representations to formalize 

knowledge in structured formats such as ontologies, logic-

based inference, and probabilistic reasoning. The fusion of 

these elements into NSR allows systems to operate in 

domains requiring high interpretability while benefiting 

from neural models’ ability to extract complex patterns. 

Ontologies are among the most widely used methods for 

structured knowledge representation, providing a 

formalized system for defining domain concepts, 

relationships, and axioms. According to [7], an ontology, O, 

consists of a set of concepts C, relationships R, instances I, 

and axioms A. Mathematically, O is represented in Equation 

(1). 
 

𝑂 = (𝐶, 𝑅, 𝐼, 𝐴)             (1) 
 

This representation allows AI models to infer logical 

relationships among entities, ensuring that domain 

knowledge remains interpretable. For instance, in plant 

disease identification, an ontology-driven rule-based 

inference system can encode relationships between 

symptoms and possible diseases, improving the system’s 

ability to reason over structured datasets. [29] further 

emphasize the role of ontologies in NSR, arguing that 

structured representations enable AI models to integrate 

expert knowledge, thereby reducing erroneous inferences. 

Logical inference mechanisms in NSR extend the 

capabilities of ontologies by providing structured 

methodologies to derive new information from predefined 

rules. First-Order Logic (FOL) enables AI systems to 

formalize decision-making processes. A decision rule for 

plant disease diagnosis, for example, can be formulated in 

Equation (2). 
 

∀𝑥: (𝑌𝑒𝑙𝑙𝑜𝑤 𝐿𝑒𝑎𝑣𝑒𝑠(𝑥)  ∧  𝑊𝑖𝑙𝑡𝑖𝑛𝑔(𝑥))  →
 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝐷𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑥)                     (2) 

 

Equation (2) implies that if a plant exhibits yellow leaves 

and wilting, it is diagnosed with nitrogen deficiency. [6] 

highlight that such logical structures provide essential 

reasoning capabilities in NSR, ensuring that conclusions 

derived from neural predictions are explainable and 

logically sound. However, real-world data is often uncertain 

or incomplete, requiring NSR systems to incorporate 

probabilistic reasoning. [18] introduced neural Markov 

logic networks (NMLNs), a statistical relational learning 

system that models joint probability distributions without 

relying on explicitly defined first-order logic rules, which 

were traditionally used in Markov logic networks (MLNs). 

Their results demonstrate significant advancements 

compared to previous approaches, particularly in their 

ability to learn an implicit representation of rules as neural 

networks, thus providing enhanced flexibility and 

performance across several tasks. The NMLN distribution 

over a possible world ω can be formulated in Equation (3). 
 

𝑝(𝜔) =
1

𝑧
. 𝑒𝑥𝑝(∑(𝑤, 𝛼)∈𝛷𝜙𝛼,𝑤(𝛾))      (3) 

 

where 𝑧 is the normalization constant (partition function), 

𝛷  represents the set of potential functions (which are 

implemented as neural networks), and 𝜙𝛼,𝑤(𝛾) denotes the 

output of the neural network for a given fragment γ of the 

relational structure. [26] proposed the Neuro-Symbolic 

Forward Reasoner (NSFR), a novel framework designed for 
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complex object-centric reasoning tasks. This approach 

combines differentiable forward-chaining using first-order 

logic with neural-based object-centric learning models, 

marking a significant advancement from traditional 

reasoning methods, which often employed non-

differentiable techniques such as symbolic reasoning alone. 

The flow diagram of the key operations and processes in 

the Neuro-Symbolic Forward Reasoner (NSFR) is 

represented in Figure 2. 
 

 
Figure 2: Flow diagram for neuro symbolic forward 

reasoner 

This probabilistic framework enables NSR systems to 

perform inference under uncertainty, allowing AI models to 

assign confidence levels to predictions. 
 

3.2  Neural Embeddings and Integration Strategies 

Neural embeddings play a critical role in bridging the gap 

between symbolic and sub-symbolic representations. By 

converting raw data into continuous vector spaces, neural 

embeddings enable NSR systems to process unstructured 

inputs such as text, images, and audio while maintaining 

compatibility with symbolic reasoning frameworks. 

Integration strategies such as hybrid architectures, attention 

mechanisms, and reinforcement learning algorithms are 

employed to synchronize neural and symbolic components 

effectively, ensuring robustness and scalability in diverse 

applications [15].  Figure 3 presents a taxonomy of Neuro-

Symbolic Frameworks, categorizing them into different 

approaches such as logic-based integration, differentiable 

frameworks, procedural semantics, and reinforcement 

learning integration. It further highlights representative 

models and references to key studies in each category.

 
Figure 3. Taxonomy of neuro-symbolic frameworks 

 

4. DISCUSSION AND FINDINGS 

[33] contributed to the major frameworks and 

methodologies in neuro-symbolic reasoning systems by 

introducing Sequential Neural Control Barrier Functions 

(SNCBFs), which integrated neural networks with control 

barrier functions, a form of symbolic reasoning. Their 

methodology enabled neural models to incorporate 

structured, rule-based constraints, ensuring safe and 

scalable robot navigation. When compared with traditional 

approaches, empirical results demonstrated that SNCBFs 

outperformed potential fields, end-to-end reinforcement 

learning, and model-predictive control, particularly in high-

density obstacle environments. This supports the claim that 

neuro-symbolic systems perform better than purely neural 

or symbolic approaches, as they balance adaptability and 

logical consistency. However, the study highlighted 

scalability challenges, particularly the exponential 

complexity of planning as obstacle density increased. [3] 

addressed neuro-symbolic reasoning in knowledge graphs, 

presenting DiffLogic, a differentiable neuro-symbolic 

framework that integrated rule-based precision with neural 

embeddings for scalable reasoning. As a methodology, 

DiffLogic exemplified a hybrid neuro-symbolic approach 

that effectively balanced accuracy and computational 

efficiency. Empirical evaluations showed that DiffLogic 

outperformed both traditional neural and symbolic models, 

supporting the argument that hybrid models achieve 

superior reasoning performance in structured data 

environments. However, the study acknowledged 

challenges in dynamic rule weighting and essential triple 

selection, which remained limitations in deploying scalable 

neuro-symbolic knowledge graphs. Future advancements, 

as suggested by [3] involved refining rule-based weighting 

mechanisms to enhance model adaptability across diverse, 

large-scale datasets. 
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[30] explored neuro-symbolic reasoning in visual 

dialogue tasks, demonstrating how memory-based symbolic 

reasoning combined with neural models enhanced AI-

driven conversations. Their methodology processed 

incremental dialogue information, effectively managing 

reasoning in long-form interactions. Performance 

evaluations on MNIST Dialog and CLEVR-Dialog datasets 

showed remarkable accuracies of 99.8% and 99.2%, 

confirming that neuro-symbolic models can surpass purely 

neural approaches in tasks requiring logical inference and 

pattern recognition. However, scalability remained a key 

limitation, and the study emphasized the need for 

standardized evaluation benchmarks to compare different 

neuro-symbolic reasoning systems. Future research in this 

domain should focus on optimizing memory-efficient 

symbolic representations and integrating multi-modal 

dialogue reasoning frameworks. Figure 4 presents reported 

performance metrics from selected neuro-symbolic studies, 

highlighting accuracy and success rates across different 

datasets.  

 

 
Figure 4:  Performance metrics on selected neuro-symbolic 

studies  

 

[30] achieved the highest scores on MNIST (99.8%) and 

CLEVR (99.2%), while [28] (90.0%) and [2] (88.0%) 

reported lower performances, reflecting variability in 

outcomes across studies.  [14] introduced a neuro-symbolic 

reinforcement learning (NS-RL) framework designed to 

improve explainability and structured policy learning. Their 

end-to-end NS-RL model incorporated a perception module 

for structured state representation, a symbolic policy 

learning module, and a policy explanation module powered 

by GPT-4 to generate textual justifications for decisions. 

Empirical results from experiments on nine Atari tasks 

confirmed that NS-RL significantly improved both policy 

interpretability and learning efficiency. This work 

demonstrates that neuro-symbolic reinforcement learning 

outperforms purely neural RL models by enhancing both 

transparency and decision-making accuracy.  

[28] introduced Neural Probabilistic Logic Learning 

(NPLL), a probabilistic reasoning framework that integrated 

neural networks with probabilistic logic for knowledge 

graph reasoning. Their approach leveraged Markov Logic 

Networks (MLNs) with variational inference to improve 

structured reasoning while maintaining model simplicity. 

NPLL achieved a 90% success rate in reasoning under 

uncertainty, significantly outperforming baseline Bayesian 

networks. This study aligned with the first research question 

by exemplifying a hybrid neuro-symbolic framework that 

enhanced structured inference in AI systems. Additionally, 

it addressed the second research question by empirically 

demonstrating that neuro-symbolic models outperform 

purely neural or symbolic approaches in knowledge graph 

reasoning tasks. 

[21] presented Probabilistic Logic Neural Networks 

(pLogicNet), a framework that integrated first-order logic 

rules with probabilistic reasoning to improve knowledge 

graph inference. Unlike NPLL, which optimized reasoning 

via variational inference, pLogicNet defined a joint 

probability distribution over knowledge graph triplets using 

Markov Logic Networks. Their results indicated that 

pLogicNet improved logical consistency while reducing 

computational inefficiency, demonstrating that probabilistic 

logic, when combined with neural networks, enhances AI’s 

ability to reason over complex structured data. This work 

answered the third research question, as it highlighted the 

challenges of scalability in neuro-symbolic AI, emphasizing 

the need for more efficient rule selection and probabilistic 

modelling. 

[20] introduced a neuro-symbolic training framework 

designed to enhance spatial reasoning over textual 

descriptions. This methodology integrates neural language 

models with symbolic reasoning constraints, compelling the 

models to adhere to logical rules during training. By 

embedding these constraints, the framework aims to 

improve the abstraction capabilities of language models, 

thereby enhancing their generalizability and facilitating 

effective transfer learning across different domains. Their 

empirical evaluations demonstrated that their neuro-

symbolic approach outperforms traditional neural models 

on various spatial reasoning benchmarks. The integration of 

symbolic constraints enabled the models to generalize more 

effectively to unobserved and complex input compositions, 

addressing limitations observed in purely neural approaches. 

This finding underscores the potential of neuro-symbolic 

systems to surpass the performance of standalone neural or 

symbolic models in tasks requiring intricate reasoning. 
Werner (2024) introduced a neuro-symbolic integration 

framework aimed at enhancing reasoning and learning over 

knowledge graphs. This approach combines symbolic meta-

rules with knowledge graph embedding methods, 

representing entities and relations in a low-dimensional 

vector space. The integration of symbolic reasoning with 

neural embeddings seeks to improve the reliability, 

interpretability, data efficiency, and robustness of 

knowledge graph completion tasks. Empirical results 

demonstrated that this neuro-symbolic method achieved a 

17% improvement in decision accuracy under probabilistic 

conditions, with an overall success rate of 95% in 

simulations, outperforming traditional Bayesian classifiers. 

This finding underscores the potential of integrating 

symbolic reasoning with neural networks to enhance 
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decision-making processes in AI systems. Figure 5 

illustrates the percentage improvement or reduction 

achieved by different studies compared to baseline methods, 

providing a comparative assessment of performance gains. 

 

Figure 5: Improvement over baselines in neuro-symbolic 

vs hybrid approaches 

 

From Figure 5, Chen et al. reported modest 

improvements of 9.5%, while Werner (2024) achieved 

17.0%. Notably, [13] demonstrated a substantial 

improvement of nearly 47%, highlighting the effectiveness 

of their approach relative to others. [24] introduced 

AudioPaLM, a large language model designed to process 

and generate both text and speech by integrating PaLM-2, a 

text-based language model, with AudioLM, a speech-based 

model. This neuro-symbolic framework unifies text and 

speech modalities, leveraging symbolic language models 

with neural speech models to enhance multimodal language 

processing. Empirical results demonstrated that 

AudioPaLM outperformed traditional speech translation 

models, particularly in zero-shot scenarios, where it 

successfully translated languages, it had not been trained on. 

This reinforces the argument that neuro-symbolic 

systems, which combine neural networks with symbolic 

reasoning, can surpass purely neural or symbolic 

approaches, particularly in tasks that require multimodal 

integration. Overall, their findings provide strong evidence 

that hybrid neuro-symbolic models can improve reasoning 

and decision-making in AI, particularly in complex, 

multimodal environments. Frameworks used in NSR 

systems are dictated by the application domain. [22] in their 

work on Simulation of smart city systems, used the 

distributed reasoning approach while [30] used the 

ontology-based reasoning for Cross-domain application 

tests. The hybrid frameworks such as Logic-NN integration, 

Bayesian neuro-symbolic and Speech-symbolic reasoning 

are also being deployed on a case-based situation. 

 

5. SUMMARY 

This review explored neuro-symbolic systems, analyzing 

28 high-quality studies to highlight their successes, 

applications, challenges, and future directions. Evidence 

shows that NSR-Systems outperform standalone Neural 

Network Systems. In section 3, we evaluated the 

combination of Neural Networks with probabilistic 

reasoning, which effectively quantified the likelihood of 

disease given plant symptoms, improving decision-making. 

[18] found that Neural Markov Logic Networks (NMLN-

K3) outperformed purely neural systems like Neural Tensor 

Prover (NTP), Greedy Neural Tensor Prover (G-NTP), and 

Contextual Tensor Prover (CTP) in various tasks. Similarly, 

[26] demonstrated that NSFR effectively handles complex 

spatial and relational reasoning tasks, outperforming prior 

state-of-the-art models in both logical and deep learning 

categories. Specifically, NSFR showcases higher accuracy 

in classifying intricate patterns within 2D and 3D datasets, 

surpassing conventional neural-based approaches in image 

recognition tasks.  The results from their work are presented 

in Table 4. 

 

Table 4: Result of NMLN-K3 compared against pure neural systems [18, 26] 

Model 
Knowledge 

Base 
Description 

Accuracy 

(Dataset) 
Accuracy 

(Value) 
Type 

NMLN-

K3 

Nations, 

Kinship, 

UMLS 

High performance in reasoning 

tasks, such as geographic and 

familial relations, medical 

concepts 

WN11, 

FB13 
74.4%, 

84.7% 
Neuro-symbolic 

NTP 
Nations, 

Kinship, 

UMLS 

Neural Tensor Prover for 

reasoning tasks 
WN11, 

FB13 
53.0%, 

75.2% 
Purely neural 

G-NTP 
Nations, 

Kinship, 

UMLS 

Greedy Neural Tensor Prover 

for reasoning tasks 
WN11, 

FB13 
75.9%, 

81.5% 
Purely neural 

CTP 
Nations, 

Kinship, 

UMLS 

Contextual Tensor Prover for 

reasoning tasks 
WN11, 

FB13 
86.4%, 

89.1% 
Purely neural 

NSFR 
Nations, 

Kinship, 

UMLS 

Effective in geographic 

relations, familial 

relationships, and medical 

concepts 

WN11, 

FB13 
95%, 92% 

Neuro-symbolic 

(combining neural-based 

inference and symbolic 

logic reasoning) 
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3.3 Future Directions 

Neuro-symbolic reasoning (NSR) faces critical 

challenges that require focused research to advance its 

capabilities. A primary issue is the opacity of neural 

networks, often regarded as black boxes, particularly in 

domains like healthcare where transparent decision-making 

is essential [12]. Integrating Internet of Things (IoT) and 

real-time sensor data with NSR models presents further 

complexity due to the multimodal nature of data, including 

images, text, and audio. Current NSR systems struggle to 

generalize to unseen data distributions and adapt to dynamic 

environments, limiting their robustness and accuracy [16]. 

Additionally, the potential of NSR in sustainable agriculture 

remains underexplored, with opportunities to enhance food 

engineering, plant classification, and diagnosis through AI-

driven insights [1, 8, 10].  

This is further exemplified by [8], who demonstrate the 

practical application of NeSy in remote sensing for forest 

inventory tasks, showing that their framework outperforms 

traditional deep learning models by up to two F1 points for 

crown delineation and three for species classification. Their 

use of semantic-based regularization to incorporate 

ecological domain knowledge addresses key challenges 

identified in this review, such as explainability and 

generalization to irregular data like mixed pixels and dense 

forests, while mitigating the “black box” nature of neural 

models through differentiable fuzzy first-order logic rules. 

This work supports the proposed NeSyBench by 

highlighting the need for benchmarks integrating 

multimodal datasets, such as remote sensing data combined 

with synthetic 3D scenes inspired by CLEVR, to enhance 

robustness in biodiversity and conservation applications, 

reinforcing the review’s emphasis on NeSy’s potential for 

scalable, interpretable AI in environmental engineering. 

Computational overhead and scalability also pose 

significant hurdles, necessitating techniques like temporal 

decomposition to optimize performance in applications 

such as autonomous driving and robotic surgery [33]. 

Refining the balance between rule-based and embedding-

based components [3] and improving symbolic 

generalization [14] are essential for developing scalable and 

efficient NSR systems. 

To address the absence of standardized evaluation 

benchmarks in NSR, as evidenced by diverse performance 

metrics (see Figure 4), we propose NeSyBench, a cross-

domain benchmark suite for evaluating NSR frameworks 

across visual reasoning, knowledge graph reasoning, natural 

language processing, reinforcement learning, and healthcare. 

NeSyBench integrates tasks from datasets such as CLEVR 

[11], Freebase, WordNet, ConceptNet, Atari games, and 

MIMIC-III [5], using standardized metrics: accuracy, F1-

score, success rate, interpretability score (1–5 scale, as in 

[5]), and computational efficiency. This suite enables direct 

comparisons of frameworks like pLogicNet, DiffLogic, 

NSFR, and NS-RL, addressing variability in study quality 

(see Figure 4). A scalability test suite will assess 

computational overhead under increasing data complexity, 

such as obstacle density in robotics [33] or knowledge graph 

size [3], building on improvements over baselines 

[improvements_over_baselines.png]. An explainability 

benchmark, inspired by Gandhirajan (2025), will quantify 

textual and symbolic explanation quality. NeSyBench will 

be hosted in an open-access repository with datasets, 

evaluation scripts, and baseline results to ensure 

accessibility and reproducibility. 

  To unify evaluation across NSR domains, we propose 

NeSyHybridBench, a synthetic and hybrid dataset suite 

combining elements from CLEVR, CLEVR-Dialog, 

Freebase, WordNet, ConceptNet, YAGO, Atari games, 

MIMIC-III, and spatial reasoning benchmarks. 

NeSyHybridBench includes cross-domain tasks, such as 

visual-knowledge graph integration (e.g., querying spatial 

relations linked to Freebase entities) and NLP-RL hybrids 

(e.g., textual constraints in Atari-like environments), with 

10,000–50,000 scalable samples per domain. Generated 

using procedural tools for controlled variations and ground-

truth symbolic annotations, it supports explainability and 

logical inference, aligning with frameworks like DiffLogic 

and NS-RL. Hosted on platforms like Hugging Face, 

NeSyHybridBench will enable reproducible evaluations 

and community contributions. To standardize evaluation 

frameworks, we propose NeSyEval, comprising:  

i. Core Metrics: Accuracy, F1-score, success rate, 

interpretability scores (1–5, via expert ratings or 

automated coherence metrics), and 

runtime/memory usage;  

ii. Comparative Baselines: Evaluations against pure 

neural (e.g., transformers), symbolic (e.g., Markov 

Logic Networks), and hybrid models, as 

demonstrated by [3, 14] 

iii. Validation Protocols: Cross-validation on unseen 

NeSyHybridBench distributions, with blinded 

assessments for domain-specific tasks (e.g., 

clinician preferences, [5]); and  

iv. Reporting Standards: Open-source scripts for 

reproducibility, including ablation studies on 

symbolic integration (e.g., probabilistic logic in 

pLogicNet). NeSyEval, paired with NeSyBench 

and NeSyHybridBench, provides measurable 

criteria to enhance NSR scalability and 

interpretability. 
 

Advancing unified models like AudioPaLM requires 

integrating diverse modalities and large-scale datasets [24]. 

Future research should prioritize advanced training 

techniques, improved resource allocation, and extended 

zero-shot learning capabilities across languages and tasks. 

By addressing these challenges through targeted research, 

NSR can achieve greater applicability and effectiveness 

across diverse domains. 
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