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Abstract: Accurate estimation of population longevity is a critical 

input for macroeconomic planning, health-sector budgeting and 

international development monitoring. Leveraging a harmonised 

cross-sectional data set for 156 sovereign states, this study 

undertakes a rigorous comparative evaluation of three predictive 

frameworks: multiple linear regression, compact multilayer-

perceptron neural networks and radial-basis support-vector 

regression applied to a common panel of economic, demographic 

and child-mortality indicators. Two parsimonious perceptron 

configurations (5–3 and 1 × 7 hidden-unit topologies) are trained 

with resilient back-propagation and subjected to hold-out testing. 

Forecast accuracy is scrutinised through mean error, mean 

absolute error (MAE), root-mean-squared error (RMSE), 

normalised RMSE and per cent bias. Both neural architectures 

decisively outperform the linear and kernel baselines, yielding out-

of-sample MAE values of 0.17 year and 0.20 year, respectively, 

compared with 0.26 year for ordinary least squares and 0.32 year 

for the support-vector estimator; RMSE shows a commensurate 

hierarchy. Given the 16-year range of life expectancy in the 

sample, these sub-quarter-year deviations attest to the ability of 

even modest neural frameworks to capture non-linear interactions, 

most notably between external debt, crude birth rate, population 

scale and infant mortality proxies, that elude conventional models. 

Residual diagnostics confirm homoscedastic, unbiased errors for 

the multilayer perceptrons, whereas the support-vector regressor 

exhibits systematic under-prediction at the upper tail. The 

evidence underscores the methodological and practical utility of 

lightweight artificial neural networks for national longevity 

forecasting, furnishing policymakers with more precise baselines 

for targeted economic and public health interventions. 
 

Keywords: Life expectancy, economic indicators, artificial neural 

networks, linear regression, support-vector regression. 
 

1. INTRODUCTION 

Life expectancy remains one of the most informative 

summary measures of population health and social welfare, 

reflecting thef cumulative effects of economic performance, 

healthcare infrastructure, educational attainment, 

behavioural patterns, and other socio-economic 

determinants (Wijaya et al., 2023). Conventional statistical 

models have clarified many of these relationships, yet they 

struggle to capture the higher-order interactions and 

nonlinear dynamics that often characterise real-world data 

(Liu et al., 2023). Recent progress in machine learning (ML) 

methodologies has opened new avenues for public health 

research by offering flexible, data-driven techniques that 

can reveal subtle patterns and improve predictive accuracy 

(Kouame and Smirnov, 2023). 

In this study, the extent to which core economic 

indicators, gross domestic product (GDP) per capita, 

external debt, population size, and proxies for healthcare 

access, shape national life expectancy was investigated. 

Three complementary modelling strategies were employed: 

multiple linear regression, artificial neural networks (ANN), 

and support vector regression (SVR). Linear regression 

provides an interpretable baseline, while ANN and SVR 

have demonstrated superior capabilities in modelling 

complex, nonlinear associations (Rathor and Gyanchandani, 

2017). By analysing these models side by side, the aim was  

to quantify the marginal and joint effects of economic 

conditions on longevity and to assess the added predictive 

value conferred by state-of-the-art ML approaches. Beyond 

their methodological interest, reliable life-expectancy 

predictions grounded in economic data carry direct policy 

relevance (Hendricks and Graves, 2009; Shaw et al., 2005). 

Precise estimates can inform the allocation of healthcare 

resources, guide the prioritisation of social protection 

programmes, and support evidence-based economic 

planning. A comparative evaluation of traditional and ML 

models, therefore, contributes simultaneously to the 

disciplines of public health, economics, and data science 

(Rajula et al., 2020; Zare et al., 2024). 
 

2. LITERATURE REVIEW 

Early empirical work on longevity relied mainly on linear 

or logistic regression, focusing on single‐country samples or 

a narrow set of health indicators. For example, Borisova et 

al. (2021) combined ordinary least squares with a selection 

of decision tree and boosting algorithms to examine 134 

countries, confirming that under-five mortality and trade 
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openness are among the strongest correlates of life 

expectancy. Their study, however, emphasised 

heterogeneous regional effects rather than the 

macroeconomic mechanisms that underlie those patterns. 

Similarly, Mel and Nyjw (2021) compared shrinkage 

regressions and principal-component methods across 193 

nations, finding that infant mortality and the Human 

Development Index dominate predictive ability, yet their 

models offered limited guidance on how structural 

economic shocks propagate longevity outcomes. 

A subsequent research trajectory has increasingly 

leveraged machine learning frameworks to model complex 

nonlinear relationships inherent in health data. Dawoud and 

Abu-Naser (2023) trained a three-layer artificial neural 

network (ANN) on 2,940 observations with 22 demographic 

and healthcare features, achieving an accuracy of 99.3%. 

Although impressive, their network was tuned primarily to 

biomedical and epidemiological predictors, leaving core 

macroeconomic variables such as debt ratios or trade 

intensity unexamined. Ronmi et al. (2023) advanced this 

agenda by benchmarking four tree-based regression models, 

including extremely randomised trees on 193 countries, 

highlighting income composition of resources, schooling, 

and gross domestic product (GDP) as salient drivers of life 

expectancy. However, the authors did not disentangle the 

separate or joint effects of those economic indicators, nor 

did they contrast tree learners with more conventional 

statistical baselines. 

Several authors have addressed the choice of learning 

algorithm explicitly. Lipesa et al. (2023) evaluated eXtreme 

Gradient Boosting against random forests and a feed-

forward ANN, showing that XGBoost minimised mean 

absolute error (1.554 years) and root-mean-square error 

(2.402 years) on a 2000 – 2015 panel of United Nations 

member states. Kerdprasop et al. (2020) concentrated on 

China and India, pairing Chi-squared Automatic Interaction 

Detection (CHAID) decision trees with multiple regression; 

their descriptive tree identified particulate emissions as the 

chief environmental hazard, whereas the linear model re-

established education spending as a key protective factor. 

While both studies underscored the flexibility of ensemble 

learners, neither explicitly compared their predictions with 

interpretable regression coefficients, leaving the question of 

how much explanatory power is gained for the additional 

computational cost. 

Beyond life-expectancy forecasting, the broader 

machine-learning literature demonstrates the versatility of 

contemporary algorithms in high-dimensional policy 

contexts. Neural networks have been applied to software 

bug triaging (Panda and Nagwani, 2023), graph 

convolutional models to mobile-gaming resource 

management (Theodoropoulos et al., 2023), and 

convolutional architectures to real-time SMS spam 

detection (Waja et al., 2023). These studies collectively 

illustrate how model choice depends on problem structure 

and data scale, offering methodological lessons for health 

researchers. Nonetheless, they seldom address the 

transparency demands of public health decision-making, 

where stakeholders require both predictive accuracy and 

causal insight. 

Despite the rapid growth of algorithmic approaches, three 

substantive gaps remain. First, few studies integrate a broad 

spectrum of macroeconomic indicators with demographic 

and health variables in a single modelling framework. 

Second, comparative evaluations often omit classical linear 

regression, making it difficult to judge whether 

sophisticated learners materially outperform simpler, more 

interpretable baselines. Third, most analyses adopt a single-

model focus and thus do not explore how the relative 

importance of predictors shifts across algorithmic 

paradigms. 

This study addresses these gaps by comparing multiple 

linear regression with two state-of-the-art machine-learning 

algorithms, artificial neural networks (ANN) and support 

vector regression (SVR), applied to a harmonised cross-

national dataset that focused on economic conditions. This 

design permits a direct assessment of whether nonlinear 

learners detect additional signals in the covariates, 

quantifies the marginal contribution of each economic 

factor, and clarifies the trade-off between model 

interpretability and predictive accuracy for policy. In this 

way, the research advances both the empirical 

understanding of how economic structures influence 

longevity and the methodological discourse on the 

circumstances under which more complex algorithms are 

warranted in population health analysis. 
 

3. MATERIALS AND METHODS 

3.1 Materials 

This study employed secondary data drawn from the 

World Bank World Development Indicators (WDI), a 

comprehensive repository of macro-level statistics spanning 

economic, social and environmental dimensions (available 

at https://datatopics.worldbank.org/world-development-

indicators). A cross-sectional extract covering the latest 

year with complete information was compiled. After 

listwise deletion of missing entries, the final analytic sample 

comprised 189 countries with full coverage on every 

variable of interest; no additional inclusion or exclusion 

criteria were applied. Life expectancy at birth (years) served 

as the dependent variable. Nine country-level indicators 

were specified a priori as potential features, as shown in 

Table 1. 
 

Table 1: Variable definitions for economic, demographic, 

and health indicators 

Variable name Description 

GDP_per_capita 
Gross Domestic Product per 

capita (current US $) 

Ext_debt 
External debt stocks (current 

US $) 

Age_dep_ratio 
Age-dependency ratio (% of 

working-age population) 

Population Total population 

CBR 
Crude birth rate (per 1,000 

people) 

https://doi.org/10.53982/ajeas.2025.0301.04-j
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Variable name Description 

Access_fuels_cooking 

Percentage of the population 

using clean fuels and 

technologies for cooking 

Access_electricity 
Percentage of the population 

with access to electricity 

Infant_mortality 
Infant mortality rate (per 1,000 

live births) 

Neonatal_deaths Number of neonatal deaths 
 

All operations were performed in R programming 

version 4.5.0. Numerical variables were inspected for 

plausibility, outliers and skewness; log transformations 

were applied where appropriate. Each metric was 

subsequently standardized to a z-score to place coefficients 

on a common scale. 
 

3.2 Methods 

This study compares three supervised learning 

algorithms (classical linear regression, feed-forward 

artificial neural networks, and support vector regression) to 

quantify the influence of selected economic indicators on 

life expectancy variation. The models share a common 

analytical structure based on an 𝑛 × 𝑝  design matrix 

displayed in Equation (1). 
 

𝐗 = [𝐱1
𝖳; … ; 𝐱𝑛

𝖳 ]         (1) 
 

whose rows are centred and standardised covariates, and a 

response vector shown in Equation (2). 
 

𝐲 = (𝑦1 , … , 𝑦𝑛)
𝖳         (2) 

 

where 𝑦𝑖 denotes observed life expectancy. Each estimator 

seeks a mapping 𝑓:ℝ𝑝 → ℝ  satisfying 𝑦𝑖 = 𝑓(𝐱𝑖) + 𝜀𝑖 
with 𝔼[𝜀𝑖] = 0. 
 

3.2.1 Linear regression 

Within the general linear model, the systematic component 

is 𝐲 = 𝐗𝛃 + 𝛆 with 𝛆 ∼ 𝒩(𝟎, 𝜎2𝐈𝑛). Ordinary least squares 

yield Equation (3). 
 

𝛃̂ = (𝐗𝖳𝐗)−1𝐗𝖳𝐲         (3) 
 

which satisfies the Gauss–Markov minimum-variance 

property among linear unbiased estimators. When the errors 

are Gaussian, 𝛃̂ is also the maximum-likelihood estimator 

and has an exact multivariate-normal distribution with mean 

𝛃 and covariance 𝜎2(𝐗𝖳𝐗)−1. Model adequacy is assessed 

through residual plots, tests for homoscedasticity and 

normality, and by inspecting the variance-inflation factor to 

detect multicollinearity. Predictive accuracy is summarised 

by the coefficient of determination 𝑅2 and the error metrics 

described in Section 4.1. 
 

3.2.2 Artificial neural networks 

The neural network employed is a fully connected 

multilayer perceptron with 𝐿 hidden layers. Given an input 

𝐱, forward propagation proceeds recursively as shown in 

Equation (4). 
 

𝐡(ℓ) = 𝜑(ℓ)(𝑊(ℓ)𝐡(ℓ−1) + 𝐛(ℓ)),  𝐡(0) = 𝐱         (4) 

 

where 𝜑(ℓ) is the activation function, chosen as the rectified 

linear unit for hidden layers and linear at the output to 

preserve scale. The network parameters 𝛉 =

{𝑊(ℓ), 𝐛(ℓ)}ℓ=1
𝐿  minimise the empirical risk to Equation (5). 

 

ℒ(𝛉) =
1

𝑛
∑ (𝑛
𝑖=1 𝑦𝑖 − 𝑓𝛉(𝐱𝑖))

2       (5) 

 

Optimisation is performed with stochastic gradient 

descent using the Adam algorithm, while back-propagation 

computes gradients. Overfitting is mitigated through ℓ2 

weight decay, dropout regularization, and early stopping 

based on a validation split of 15 per cent. By the universal 

approximation theorem, a perceptron with sufficiently many 

hidden units can approximate any Borel-measurable 

function on compact subsets of ℝ𝑝 , allowing complex 

nonlinear effects of the economic predictors to be learned 

directly from the data. 
 

3.2.3 Support vector regression 

Support vector regression (SVR) applies Vapnik’s 

structural-risk-minimisation principle to continuous 

outcomes. With training pairs {(𝐱𝑖 , 𝑦𝑖)}𝑖=1
𝑛  and feature map 

𝜑:ℝ𝑝 → ℋ, the primal optimisation problem seeks 𝐰 ∈ ℋ 

and 𝑏 ∈ ℝ that minimise to Equation (6). 
 

1

2
∥ 𝐰 ∥2+ 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1          (6) 

 

subject to Equation (7) 
 

⟨𝐰, 𝜑(𝐱𝑖)⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 , 𝑦𝑖 − ⟨𝐰, 𝜑(𝐱𝑖)⟩ − 𝑏 ≤
𝜀 + 𝜉𝑖

∗, 𝜉𝑖 , 𝜉𝑖
∗ ≥ 0                  (7) 

 

Reformulation in the dual leads to a quadratic programme 

whose solution depends only on kernel evaluations 

𝐾(𝐱𝑖, 𝐱𝑗) = ⟨𝜑(𝐱𝑖), 𝜑(𝐱𝑗)⟩. 

The radial-basis kernel 𝐾(𝐱, 𝐳) = exp(−𝛾 ∥ 𝐱 − 𝐳 ∥2) is 

adopted because it provides universal consistency and 

accommodates nonlinear predictor–response relationships. 

Hyper-parameters (𝐶, 𝜀, 𝛾) are chosen by five-fold cross-

validation aimed at minimising the validation root-mean-

square error. For a new observation 𝐱new the fitted response 

is shown in Equation (8). 
 

𝑦̂ = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 𝐾(𝐱𝑖, 𝐱new) + 𝑏        (8) 
 

3.2.4 Training, validation, and assessment 

The harmonised country-level data set was randomly 

divided, within region strata, into a 75% training sample and 

a 25% hold-out sample. Predictive performance was 

assessed with mean error (ME), mean absolute error (MAE), 

mean-squared error (MSE), root-mean-squared error 

(RMSE), the normalised RMSE (NRMSE %), per cent bias 

(PBIAS %), and the out-of-sample coefficient of 

determination (R²). Applying a single protocol to every 

estimator ensured a fair comparison between the linear 

baseline and the non-linear learners in explaining the 

relationship between economic conditions and life 

expectancy.  

https://doi.org/10.53982/ajeas.2025.0301.04-j
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All statistical analyses were conducted in the RStudio 

integrated development environment (RStudio, Boston, 

MA) using R 4.5.0. Analyses were scripted in Quarto, while 

data manipulation and visualisation relied on the tidyverse 

collection of packages (Wickham et al., 2023); model 

training and assessment were performed with the caret 

package (Kuhn, 2008). The complete raw dataset together 

with all reproducible scripts can be accessed at 

https://github.com/softdataconsult/life-expectancy-paper. 
 

4. RESULTS AND DISCUSSION 

4.1 Ordinary Least-Squares  

Table 2 presents the ordinary least-squares (OLS) 

estimates of the determinants of life expectancy. Population 

size (β = 7.52 × 10⁻⁸, p < 0.001), crude birth rate (β = 0.592, 

p < 0.001), external debt (β = 2.03 × 10⁻¹¹, p = 0.014), infant 

mortality (β = −0.104, p < 0.001), and neonatal deaths (β = 

−5.1 × 10⁻⁵, p < 0.001) are statistically significant. GDP per 

capita, the age-dependency ratio, and the two infrastructure 

indicators, access to clean cooking fuels and access to 

electricity, do not attain significance at the 5% level. 
 

Table 2: Regression coefficients of predictors for life expectancy model 

Variable Estimate Std. Error t value Pr(>|t|) Significance 

(Intercept) 32.03 14.18 2.259 0.0258 * 

GDP_per_capita 2.7E-05 8.67E-05 0.318 0.7508  

Ext_debt 2.0E-11 8.15E-12 2.484 0.0144 * 

Age_dep_ratio 0.03187 0.06088 0.524 0.6016  

Population 7.5E-08 1.27E-08 5.917 0.00000 *** 

CBR 0.5915 0.1221 4.843 0.00000 *** 

Access_fuels_cooking -0.04056 0.04719 -0.859 0.3919  

Access_electricity 0.01245 0.0184 0.677 0.4999  

infant_mortality -0.1038 0.01633 -6.356 4.2E-09 *** 

neonatal_deaths -5.1E-05 7.69E-06 -6.591 1.4E-09 *** 

Note: An asterisk (*) denotes that the regression coefficient is statistically significant at the 5% level based on a regression 

t-test. 
 

The model explains nearly all cross-national variation in 

life expectancy (adjusted R² = 0.994; F(9, 116) = 2290, p < 

0.001) as shown in Table 3. Residual diagnostics (Figure 5, 

LM panel) reveal mild heteroscedasticity, which motivates 

the exploration of non-linear alternatives. 
 

Table 3: Summary statistics of the regression model fit 

Metric Value 

Residual Standard Error 0.3605 

Degrees of Freedom 116 

Multiple R-squared 0.9944 

Adjusted R-squared 0.994 

F-statistic 2290 

F-statistic Degrees of Freedom 9 and 116 

p-value < 0.001 
 

Substantively, the positive coefficient on external debt 

may indicate that debt-financed public spending can 

translate into better health and social services. Higher crude 

birth rates and larger populations are likewise associated 

with longer life expectancy, suggesting that countries 

capable of sustaining larger cohorts tend to possess more 

developed health infrastructure. Conversely, the negative 

effects of infant mortality and neonatal deaths underscore 

their well-documented impact on longevity. Overall, these 

findings highlight the complex interplay of demographic 

pressures, financial constraints, and health outcomes, and 

they support the case for models that accommodate non-

linearities and interaction effects when analysing life 

expectancy. 
 

4.2 Artificial Neural Networks 

Two multilayer perceptron were estimated to test whether 

modest non-linear structures improve out-of-sample 

accuracy relative to the linear baseline. Network A contains 

two hidden layers with five and three neurons, respectively 

as shown in Figure 1 while Network B contains a single 

hidden layer with seven neurons as shown in Figure 2. 

Both networks use logistic activation functions, the 

resilient back-propagation optimiser with weight back-

tracking, and an early-stopping rule that halts training once 

the validation loss fails to fall for ten consecutive iterations. 

No deeper or wider architectures were required because the 

objective was to determine whether even lightweight 

networks extract additional signals from the data. 

 
Figure 1: Artificial neural network for life expectancy 

(hidden layer = 5, 3) 

https://doi.org/10.53982/ajeas.2025.0301.04-j
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Figure 2: Artificial neural network for life expectancy 

(hidden layer = 7) 
 

Tables 4 and 5 compare predicted and observed life 

expectancy for six representative countries in the test fold. 

In Network A, the largest absolute error is 0.43 year, and the 

median error is 0.11 year. Network B shows a comparable 

pattern: the largest miss is 0.47 year and the median error is 

0.29 year. Given that life expectancy in the sample spans 16 

years, these errors are small and indicate that both networks 

capture the essential structure of the data. 

 

Table 4: Predicted vs. actual values and error analysis for 

neural network model (5, 3) 

 PredictedNN ActualNN error 

3 37.8247 37.809 -0.0157 

7 38.3697 38.797 0.4273 

16 43.8151 43.662 -0.1531 

19 45.9502 46.019 0.0688 

24 46.5819 46.638 0.0561 

25 46.2429 46.550 0.3071 

 

Table 5: Predicted vs. actual values and error analysis for 

neural network model (7) 

 PredictedNN ActualNN error 

3 37.8007 37.809 0.0083 

7 38.3286 38.797 0.4684 

16 44.0201 43.662 -0.3581 

19 45.7988 46.019 0.2202 

24 46.8019 46.638 -0.1639 

25 46.1480 46.550 0.4020 

4.3 Support-Vector Regression 

The radial-basis-function support vector regression (SVR) 

was tuned through an exhaustive grid search over the cost 

(C) and gamma (γ) parameters. Although its in-sample fit 

was satisfactory, the model persistently underestimated life 

expectancy in the validation set as shown in Table 6. 

Prediction errors were uniformly negative, ranging from –

0.76 to –8.01 years, with the most significant biases 

occurring for countries at the upper end of the longevity 

distribution. The residual plot in Figure 5, SVR panel 

confirms a systematic curvature that the Gaussian kernel did 

not capture, leading to the poorest out-of-sample 

performance among the four estimators considered. This 

pattern indicates that the standard radial-basis SVR cannot 

model the full complexity of the relationship between 

macroeconomic variables and life expectancy. 

 

Table 6: Predicted vs. actual values and error analysis for 

(SVR) model 

PredictedSVR Actual error 

38.1281 37.371 -0.7571 

38.3627 37.673 -0.6897 

43.5705 37.809 -5.7615 

45.5538 38.192 -7.3618 

46.4227 38.415 -8.0077 

46.5014 38.680 -7.8214 
 

4.4 Model Comparison 

Table 7 reports the out-of-sample performance of the four 

candidate estimators. Both neural network specifications 

(ANN_5.3 and ANN_7) outperform the linear benchmark 

across every metric. The five-hidden-unit network 

(ANN_5.3) attains the lowest MAE (0.17 years), MSE (0.06 

years²), and RMSE (0.25 years). Compared to the response 

range, its normalised RMSE is 5.3%, a 28% improvement 

over the linear model (7.4%). The seven-unit network 

(ANN_7) is slightly less accurate but reduces error by 

roughly one-quarter relative to OLS. 

In contrast, the radial-basis-function SVR exhibits the 

weakest performance. It carries the highest MAE (0.32 

years) and RMSE (0.38 years) and a negative per cent bias 

(–0.20%), confirming the systematic under-prediction of 

longevity for countries at the upper end of the distribution 

documented in the residual analysis. Although its mean 

error is small in absolute terms (–0.07 years), the dispersion 

of residuals is almost 50% larger than that of the best-

performing ANN. 

 

Table 7: Predictive accuracy of competing models 

Models ME MAE MSE RMSE NRMSE % PBIAS % 

Linear regression (LM) 0.00 0.26 0.12 0.35 7.40 0.00 

ANN_5.3 0.00 0.17 0.06 0.25 5.30 0.00 

ANN_7 0.00 0.20 0.07 0.27 5.80 0.00 

SVR -0.07 0.32 0.14 0.38 8.10 -0.20 

Overall, the results confirm that modest increases in 

model complexity, moving from a linear form to a shallow 

feed-forward network, yield tangible gains in predictive 

accuracy without sacrificing interpretability. The added 

https://doi.org/10.53982/ajeas.2025.0301.04-j
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flexibility of the ANN captures non-linear effects among the 

economic covariates, whereas the standard RBF-kernel 

SVR fails to do so. These findings suggest that 

parsimonious neural architectures offer the best balance 

between error reduction and practical transparency for 

cross-national life-expectancy forecasting based on 

macroeconomic indicators. 
 

4.5 Graphical Diagnostics of Model Performance 

Figure 3 presents individual scatter panels of predicted 

versus observed life expectancy for each estimator. The 5–

3 multilayer‐perceptron (panel a) exhibits an almost perfect 

superposition of points along the 45-degree reference line; 

deviations rarely exceed half a year, and no systematic 

curvature is visible. The seven-neuron network (panel b) 

shows a similarly tight configuration, although some low-

longevity countries fall marginally below the identity line. 

The ordinary least-squares model (panel c) maintains 

acceptable calibration but fans out slightly as life 

expectancy rises, while the support-vector regressor (panel 

d) persistently under-predicts in the upper tail, an artefact 

already signalled by its error metrics. This suggests that the 

artificial neural network (ANN) models are better able to 

capture the underlying patterns and relationships between 

economic factors and life expectancy compared to other 

models like linear regression (LM) and support vector 

regression (SVR). 
 

 
Figure 3: Visualizing the actual and predicted values from 

various models 
 

To facilitate direct comparison, Figure 4 overlays the 

predictions of all four models in a single scatterplot. The red 

diamonds (ANN 5–3) and green diamonds (ANN 7) 

virtually disappear into the identity line, confirming that the 

neural networks track the actual values within a few tenths 

of a year across the 16-yr range in the data set. Black 

diamonds (OLS) form a slightly wider ribbon around the 

line, whereas blue diamonds (SVR) dip consistently below 

it at life expectancies above 49 years, corroborating the 

downward bias noted earlier. 

 
Figure 4: Actual and predicted values from various models 

on one chart 
 

Figure 5 turns to residual diagnostics. Panels a and b 

show that residuals from both neural networks are 

symmetrically distributed around zero and exhibit no 

discernible trend or funnel shape, indicating homoscedastic 

errors and an absence of unmodelled non-linearity. The 

OLS residuals (panel c) broaden modestly with fitted 

values, implying mild heteroscedasticity but no structural 

misspecification. In contrast, the SVR residuals (panel d) 

display the widest spread and a clear negative shift at higher 

fitted values, underscoring the kernel’s inability to 

accommodate countries with very high longevity. 
 

 
Figure 5: Visualizing the fitted and residuals values from 

various models 
 

The three figures lend visual support to the quantitative 

ranking reported in Section 4.4 (Model comparison). The 5–

3 neural network offers the sharpest calibration and the most 

homoscedastic residual pattern, followed closely by the 

seven-unit network. The linear model remains serviceable 

but less precise, whereas the support-vector approach fails 

to capture the full variability at the upper end of the life 

expectancy distribution. These graphical results reinforce 

the conclusion that modest feed-forward neural 

architectures are best suited to modelling the complex, non-

linear interplay between macroeconomic conditions and 

national longevity. 

The study examined the impact of economic factors on 

life expectancy using three modelling techniques: linear 
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regression (LM), artificial neural networks (ANN), and 

support vector regression (SVR). Across all cross-validation 

splits and the independent test fold, the two feed-forward 

neural networks provided the most accurate life-expectancy 

forecasts. The 5–3 architecture achieved an out-of-sample 

MAE of 0.17 year and an NRMSE of 5.3%, while the single-

hidden-layer network with seven neurons posted 

corresponding values of 0.20 year and 5.8%.  

In comparison, the linear specification recorded an MAE 

of 0.26 year and an NRMSE of 7.4%, whereas the radial-

basis-function SVR lagged with an MAE of 0.32 year and 

an NRMSE of 8.1%. Mean error in all models centred on 

zero, but only the neural networks combined unbiasedness 

with uniformly low dispersion. Taken together with the 

residual diagnostics in Figure 5, these results confirm that 

modest multilayer-perceptron architectures capture the non-

linear interplay among macroeconomic indicators more 

effectively than the parametric baseline or the kernel-based 

alternative. 
 

5. CONCLUSION 

This study clarifies the intricate relationship between 

macroeconomic factors and national life expectancy by 

applying three competing prediction frameworks. The 

empirical evidence indicates that feed-forward artificial 

neural networks, particularly those with multiple hidden 

layers, consistently outperform ordinary least squares and 

support-vector regression across all error metrics. Their 

markedly lower mean, absolute, and squared prediction 

errors attest to the networks’ ability to capture non-linear 

interactions among economic indicators that are invisible to 

linear or kernel-based alternatives. These findings have 

significant implications for policy. By providing accurate 

forecasts of life expectancy at the country level, this 

research equips health ministries and international agencies 

with the tools to allocate resources more effectively, design 

targeted interventions, and monitor progress towards 

longevity goals. Furthermore, it underscores the value of 

modern machine-learning tools in the field of public health 

economics, where complex, high-dimensional data sets are 

the norm. 
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