
12Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28 ABUAD INTERNATIONAL JOURNAL OF NATURAL AND APPLIED SCIENCES
ISSN: 2955-1021
AIJNAS 2022, Volume 2, Issue 1, pp 12-28
https://doi.org/10.53982/aijnas.2022.0201.02-j
Copyright ©2022
https://journals.abuad.edu.ng/index.php/aijnas

INTRODUCTION

In recent years, handheld devices usage has
exceeded that of desktops, while security and
privacy concern about data in these devices are

increasing exponentially in personal and corporate
environment. Android has been the most commonly
used operating system in smartphone due to its ease
of use in the transferring and receiving of information
on various forms. Today, professionals in diverse
spheres of life currently prefer to use their personal
Smartphones and tablets as the case may be for
carrying out corporate work related tasks like email,
documents, calendar, corporate apps among others,
the later has greatly helped in achieving a balance
between personal and corporate life.

Programs that steal information also known as
malicious software affects the user’s mobile devices
by exploiting the vulnerabilities. The types of
malware that are most commonly used are viruses,
worms, Trojans, among others. There is also another
widespread use of malware which allows malware
authors to get sensitive information like bank details,
contact information among others. Most of the
malware that affect mobile devices are embedded
into mobile application or files accessed from the
mobile device. These programs can destroy or steal
sensitive and private information in any system. A lot
of advances can be seen these days in the field of smart

phones and as the number of users is increasing day by
day, facilities are also increasing. Information helps to
clear any form of uncertainty and answers the question
of what an entity is and thus defines both its essence
and nature of its characteristics. Information relates
to both data and knowledge, as data represents values
attributed to parameters and knowledge signifies
understanding of a concept (Willems et al., 2007).

In terms of communication, information is expressed
either as the content of a message through direct
or indirect observation and that perceptive can be
construed as a message in its own right and in that
sense, information is always conveyed as the content
of a message. Information can be encoded into
various forms for transmission and interpretation (for
example, information may be encoded into a sequence
of signs, or transmitted via a signal). It can also be
encrypted for safe storage and communication (Salton
et al., 1988).

Leakage is the act or process or an instance of
leaking; in other words it is something or the amount
that leaks. Leakage is premium revenue that is lost,
often because a policy holder has not been truthful
about facts or lifestyle changes or has committed
some fraud. Information leakage in this study may be
defined as the accidental or unintentional distribution
of private or sensitive information to an unauthorized

Review of Works Content Analyzer for Information Leakage Detection and
Prevention in Android Smart Devices

Okebule T1*, Adeyemo. O.A2, Olatunji K.A3 and Awe. A.S4

Department of Mathematical and Physical Sciences.
Afe Babalola University,Ado-Ekiti, Ekiti State, Nigeria.

 *Corresponding author: okebulet@abuad.edu.ng
Abstracts
The advent of android operating systems introduced tools to keep track of users’ information activities and prevent information leakage
which bridged the trust between application developers and consumers. A review of related literature shows that several phenomena
had been developed to prevent malicious applications from stealing personal sensitive information from smart phones but there is still
the need for efficient solutions. This study presents a literature review of works on content Analyzers for information leakage detection
and prevention on android-based devices. The review will help to combine different concept to minimize false positives that will in turn
lead to increase in code coverage towards detecting the maximum number of data leaks.
Keywords: Android, Content Analyzer, Static Analysis, Dynamic Analysis, Information leakage, Information leakage detection,
Information leakage Prevention.

13Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

entity that can be caused by negligence or intentional
sabotage such as, emails sent to the wrong recipients.
Also, asides negligence, it is a universal truth that the
motivation to leak sensitive information will exist no
matter what counter measures are taken. The result
is that as storage media continually becomes more
mobile and smaller in size, more sensitive information
is likely to be stored on such media, having a greater
likelihood of being lost or stolen.

Information Leakage Detection has been described as
a situation whereby malicious circuits are hidden on-
chip by illegally written to the main memory. It has
not been ascertained whether data fetches and reads
are a concern and if some confidential information
are read from the memory, it cannot be leaked to
the external world unless it is leaked out on to the
memory bus. Often time, there may be no external
data interface (e.g., data/network ports) on the chip
itself other than the address and data bus. Information
leakage prevention (ILP) is a set of vital information
security tools intended to prevent unauthorized users
from sending sensitive or critical information from a
private user’s devices (Klieber et al., 2014).

Related Works on Content Analyzer for
Information Leakage Detection and Prevention in
Android Smart Devices.
The paragraphs below are the gathered and reviews
of related work for a critical assessment on Content
Analyzers for Information Leakage Detection and
Prevention on Smartphones Devices.

TaintDroid
Enck et al. (2014) developed TaintDroid with dynamic
approach (also called taint tracking) alerts information
leaks inside an Android application via dynamic taint
tracking. AppIntent redefines the privacy leakage
as user-unintended sensitive data transmission and
designs a new technique, event-space constraint
symbolic execution, to distinguish intended and
unintended transmission. However the tools could
neither analyze other kinds of undesirable behaviors
such as stealthily sending SMS, nor examine the
internal logic of sensitive behaviors.

DroidScope
Yan et al. (2012) developed DroidScope, a framework
to create dynamic analysis tools for Android malware
that trades off simplicity and efficiency for transparency
that extends traditional techniques to cover Java
semantics. However, the problem of analyzing Android
applications is not simple as how to capture behaviors

from different language implementations. It is hard
to conduct effective analysis without considering
Android’s specific security mechanism. Permission
Event Graph, which represents the temporal order
between Android events and permission requests,
is proposed to characterize unintended sensitive
behaviors. However, this technique could not capture
the internal logic of permission usage, especially when
multiple emissions are intertwined.

DroidSafe
Steven et al. (2014) designed DroidSafe for static
information flow analysis tool that reports potential
leaks of sensitive information in android applications.
DroidSafe combines a comprehensive, accurate and
precise model of the android runtime with static
analysis design decisions that enable the droidSafe
analyses to scale to analyze this model and by a
combination of analyses together can statically resolve
communication targets identified by dynamically
constructed values such as strings and class
designators. DroidSafe’s reporting is defined by the
source and sink calls identified in the Android API.
An attacker could exfiltrate API-injected information
that is not considered sensitive by DroidSafe, or via
a call that is not considered a sink; and it would not
be reported. The analysis does not have a fully sound
handling of Java native methods, dynamic class
loading and reflection. Different versions exist of
Android and the system analyze an application in the
context of Android 4.4.3.

Woodpecker
Kim et al. (2012) implemented Woodpecker tool that
was developed for the Android platform and thus
needs to overcome platform-level peculiarities for
the control-flow construction and data flow analysis.
Most importantly, Woodpecker has a different goal in
uncovering unsafe exposure of dangerous capability
uses, including both explicit and implicit ones. Signing
key, is installed to grant the additional permission.
However, due to the fact that the system cannot rule
out the possibility of a colluding application being
installed at a later time, its mere absence does not
indicate such an implicit leak is ‘safe’ and may not
occur later. Meanwhile, the system limit the attacker’s
scope by assuming the Android framework (including
the Operating System kernel) is trusted. Also, the
system assumes that the signing key to the system
image has not been leaked to the attacker. Given these
constraints, a malicious application will not be able to
directly access the high privilege Applications.

14Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

MapReduce Algorithm
Liu et al. (2016) designed MapReduce algorithm
for privacy-preserving detection of sensitive data
exposure with the capability to arbitrarily scale as
well as use of public resources for the process. This
solution uses the MapReduce framework for detecting
exposed sensitive content, because it has the ability
to arbitrarily scale and utilize public resources for the
task, such as Amazon EC2. The algorithms support
a useful privacy-preserving data transformation.
This transformation enables the privacy-preserving
technique to minimize the exposure of sensitive data
during the detection. This prototype implemented
with the Hadoop system achieves 225 Mbps analysis
throughput with 24 nodes. This transformation supports
the secure outsourcing of the data leak detection to
untrusted MapReduce and cloud providers. However,
the system is not developed for intentional information
exfiltration, which typically uses strong encryption.

SCANDAL
Jinyung et al. (2018) develop SCANDAL, a Static
Analyzer for Detecting Privacy Leaks in android
applications. Static analyzer SCANDAL is a
technique for providing a formal sound and automatic
static analysis. It has been referred to as a sound
and automatic static analyzer for detecting privacy
leaks in Android applications. This tool analyzed 90
popular applications using SCANDAL from Android
Market and detected privacy leaks in 11 applications
and also analyzed 8 known malicious applications
from third-party markets and detected privacy leaks
in all 8 applications. The limitation of this model is
that, SCANDAL does not fully support reflection-
related APIs and the time performance and memory
consumption during the analysis is very low and this
is considered for future works.

Aquifer
Nadkarni et al. (2013) developed a tool for preventing
accidental data disclosure in modern operating
systems. Aquifer is a policy system, as well, as
framework for avoiding accidental data disclosure in
modern operating systems. In Aquifer, application
developers give secrecy restrictions which protect the
entire user interface workflow during the user task.
The limitation of developed tool is that, malicious
applications are not taken into considerations.

CopperDroid
Aristide et al. (2014) performed system call-centric
dynamic analysis of Android applications, using
Virtual Machine Introspection. The novelty of

CopperDroid lies in its doubting approach to identify
interesting OS- and high-level Android-specific
behaviors. It reconstructs these behaviors by observing
and dissecting system calls and, therefore, is resistant
to the multitude of alterations the Android runtime is
subjected to over its life-cycle because CopperDroid’s
has reconstruction mechanisms that are doubting to
the underlying action invocation methods, it is able
to capture actions initiated both from Java and native
code execution. Using this technique, it successfully
triggered and disclosed additional behaviors on more
than sixty percentages of the analyzed malware
samples. This qualitatively demonstrates the versatility
of CopperDroid’s ability to improve dynamic-based
code coverage. The limitation of this tool is that,
CopperDroid system call tracking would not provide
any behavior insights if it was not combined with
Binder information and automatic (complex) Android
objects reconstruction.

RiskRanker
Michael et al. (2011) designed a RiskRanker to
automatically collect data such as: the location of the
secondary application; background dynamic code
loading and related execution path(s); programmed
access to internal directories; use of encryption
and decryption methods; and native code execution
and JNI accesses. The potential security risks into
corresponding detection modules of two orders
of complexity: the first-order modules handle non
obfuscated applications by evaluating the risks in a
straightforward manner; the second-order modules
capture certain behaviors (for example., encryption
and dynamic code loading) that are in themselves not
of concern, but that in conjunction with others may
form malicious patterns and be instrumental to detect
stealthy malware. These analysis modules ultimately
produce output that includes a severity rating and
related evidence to verify the behavioral pattern in
each reported application. This output is then sorted
by severity to produce a prioritized list of suspicious
applications that merit further analysis. RiskRanker
reports, is a medium-risk for the user; which could
result in the user being charged for money sneakily
or upload undeniably private information to a remote
server. For example android has a group of permissions
named, which is defined as permissions that can be
used to make the developer spend money without
their direct invement. If abused, these features can
be used to construct malware such as SMS Trojans,
which send text messages to premium phone numbers
that result in charges being placed on the user’s
phone bill. Such malware is popular due to the direct

15Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

return it provides to malware authors, but these same
features do have legitimate uses, typically in the form
of instant-messaging, reminder, or social-networking
applications.

Labyrinth
Shivakumara et al. (2019) designed an algorithm
for dynamic mechanism of data leakage detection
and prevention that performed an enhanced form of
value similarity analysis to detect data leakage even
when sensitive data (such as a password) is encoded
or hashed. Labyrinth supports both Android and iOS
the development of automation solutions in which
the systems would be able to learn itself for its self-
defensive capabilities and the human invement in
the defense mechanism will be kept to minimum.
However, this approach focus on area of detection
of data leakage and prevention algorithms, tools and
technologies supported.

Rapid Screening of Transformed Data Leaks
Xiaokui et al. (2015) designed rapid screening of
transformed data leaks with efficient algorithms
and parallel computing with two new algorithms for
detecting long and transformed data leaks. The system
achieved a high detection accuracy in recognizing
transformed leaks compared to the state-of-the-art
inspection methods. It parallelize its prototype on
graphics processing unit and demonstrate the strong
scalability of their detection solution required by a
sizable organization. This technique has high level
of precision in finding transformed information leaks
compared with the state-of-the-art set intersection
technique. However, it is time consuming process.

POSTER
Shweta et al. (2017) proposed a technique called
POSTER for detecting Inter-App Information Leakage
Paths. The proposed technique was based on verification
method that used efficiently to check all the possible
paths generated due to inter-app communication and to
verify if the paths are admissible on the requirements
of the safe state (no collusion). The paper revealed
that, only intents have been explored as a means of
inter-app communication mechanism. Based on this,
the proposed collusion checking property detected
presence/absence of collusion. This method provides
a formal representation of the extracted information.
This step helps in a compact representation of relevant
information that can be given to model-checking
tool. However, the malicious app developers generate
the leakage path across multiple apps. Hence it is
challenging to detect such leakage path.

Attire
Hoyle et al. (2013) developed an Attire for Conveying
information exposure through avatar apparel. Attire
system was built on an app called Attire to convey
real-time information exposure in a lightweight and
unobtrusive manner. Attire was based on their initial
exploration of using an avatar for conveying exposure.
As found in the background of computer desktops and
smartphones used for this purpose, Attire presents the
avatar as desktop wallpaper. Presently Attire handles
a user’s current location as the piece of personal
information being accessed by others. Attire detects
the user’s location and accordingly situates his or her
avatar in one of four typical locations: home, work,
school and a place of social interactions such as a
restaurant or bar. Each location is associated with
contextually appropriate default attire. However,
the user is rarely informed whether, when and by
whom information was actually accessed within
these specified parameters for permitted access. For
example, knowing that information was accessed
repeatedly within a short time-frame could be useful
for making judgments such as urgency or stalking.

MR-Droid
Fang et al. (2017) presented MR-Droid: A Scalable and
Prioritized Analysis of Inter-App Communication for
accurate and scalable Inter component communication
risk detection. The goal is to empirically evaluate
ICC(Inter component communication) risks based on
an app’s inter-connections with other real-world apps
and detect high-risk pairs by constructing a large-scale
ICC graph, where each node is an app component
and the edge represents the corresponding inter-app
ICCs. The MapReduce based approach is divided
into two broad steps. MR-Droid identifies ICC nodes
(both sources and sinks) and group inter-app ICCs
that belong to an app pair using MapReduce. In the
second step, risk assessment module which detects the
presence of risk and assigns ranking to the detected
risk. Prioritizing risks helps to reduce false alarms.
MapReduce based framework to scale up compositional
app analysis, detect inter-app communication threats
specifically intent on hijacking, intent spoofing and
collusion. They also prioritized the identified ICC
risks, based on the communication context of apps.
However, this approach can handle intent based ICC
communications only. Therefore, security risks posed
by other inter-app channels like content providers,
shared preferences, among others, cannot be detected.

16Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

Detecting Inter-App Information Leakage Paths
Klieber et al. (2014) presented a model for detecting
Inter-App Information Leakage Paths. The approach
is divided into four broad steps. The first step is to
extract information related to ICC sources, sinks and,
intent based communication channels. The second
step is dataflow analysis to map sensitive information
provided. The third step, PROMELA model is
generated for each app. In the fourth step, model
checking is done using the generated models and
collusion detection property. The approach presented a
model-checking based approach for inter-app collusion
detection. The authors presented compositional app
analysis to identify set of conspiring apps inved in the
collusion.

Approach Towards Automated Android App
Collusion Detection
Asavoae et al. (2016) presented an approach towards
Automated Android App Collusion Detection. This is a
statistical approach consisting of defining probabilistic
model, training of the model for estimating the model
parameter on the training set and validating the model
on test dataset. In addition, the study also presented
that model-checking is the feasible approach to detect
collusion in Android apps. It identified that collusion
can cause information theft, money theft or service
misuse. They defined collusion between apps as some
set of actions executed by the apps that can lead to a
threat. However, the statistical approach performance
could be due to a bias of validation dataset towards
the methodology and this approach did not address the
issue of scalability.

User-Intention Based Program Analysis
Elish et al. (2012) proposed a User-Intention Based
Program Analysis for Android Security. This method
was basically on ICC Map, which is a hash map data
structure. It stores ICC entry and exit points that can
be extracted by scanning bytecode of source and target
apps respectively. It is used to statically characterize
the inter-app ICC channels among the Android apps.
They defined collusion between apps as some set of
actions executed by the apps that can lead to a threat.
The approach statically identifies the predicted risk
level associated with the inter-app ICC calls, but it
does not confirm the existence of the collusion and
has difficulty in performing the analysis on programs
that employ obfuscation techniques, dynamic code
loading, or use of reflection.

IccTA
Li et al. (2015) developed IccTA for detecting
inter component privacy leaks in android apps
security. IccTA method proposed APK Combiner to
disassembled every app in order to obtain manifest
and small files using android apk tool as reverse
engineering tool. After that all files corresponding
to different apps are combined together into a single
directory and conflicts are resolved. IccTA is a
static taint analyzer to detect privacy leaks between
components in Android apps. It claims to improve its
precision of analysis by propagating context-aware
information. IccTA cannot analyze apps of big size
as it requires too much memory consumptions and
system often gets hanged. It cannot detect leak through
multi-threading. It assumes the execution of threads in
arbitrary but sequential order.

Permissionflow
Sbirlea et al. (2013). Designed an automatic detection
of inter-application permission leaks in android
applications for permissionflow. Permissionflow
consists of three major modules, i.e. permission
mapper, rule generator and decision maker. The
approach consists of identifying APIs whose
execution leads to permission-checking. Then another
module, rule generator will define rules for tainting,
then another open-source tool named Andromeda to
identify flows and components. Decision maker will
allow or disallow the flow based on permissions.
Permissionflow is a single-app static analysis that
handles attacks related to obtaining unauthorized
access to permission protected information. It focuses
on three types of attacks viz. permission collusion,
confused deputy and Intent spoofing. PermissionFlow
uses taint analysis to capture the flow of permissions.
Permissionflow records a large number of false
positives due to the checking of redundant permissions
and data dependent checks. Permissionflow does not
handle native code permissions.

Amandroid
Wei et al. (2014) designed Amandroid; a precise and
general inter component data flow analysis framework
for security vetting of android apps. Amandroid
proceeds by converting an app’s Dalvik bytecode to
an intermediate representation (IR) for subsequent
analysis. Amandroid go on to generate an environment
model that emulates the interactions of the Android
System with the app to limit the scope of the analysis for

17Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

scalability. Amandroid builds an inter-component data
flow graph (IDFG) of the whole app. Amandroid is a
static analysis tool that has the capability of calculating
all objects’ points-to information in a both flow and
context-sensitive way. This tool detects whether there
is any information leakage from a sensitive source
to a critical sink by providing an abstraction of the
app’s behavior. Amandroid can be used for a number
of useful security analysis as data leak detection,
data injection detection and detection misuse of an
API. Amandroid does not handle concurrency and
reflections. An app may have multiple components
and then may run concurrently and when multiple
components interleave, this may induce some security
issues. Amandroid has limited capability to handle
exceptions. Amandroid may not detect an exception,
when an app has a security issue where the core of an
exception handler plays a role.

DidFail
Klieber et al. (2014) designed DidFail : Android Taint
Flow Analysis for App Sets. DidFail has modified
FlowDroid by adding few intent method calls as
sources (onActivityResult ()) and sinks (setResult ()).
It has also added code to analyze put Extra call for the
intents that are uniquely identified by ID in Transform
APK step. FlowDroid accepts transformed APK
as the input and conducts taint analysis. It provides
flows within the components of an app as the output.
DidFail conducts static taint analysis of Android apps
augmenting FlowDroid and Epicc tools to detect intra-
component and inter component information flow
in a set of apps. It performs analysis in two phases
where the first phase determines information flow
within the app and second phase determines flow
across the apps. However, DidFail cannot detect flow
of information when static fields are used as a source
or sink for intents i.e. it misses the flow if an intent
reads information from static field and does not handle
native calls and reflection.

ComDroid
Chin et al. (2011) developed ComDroid. This Analyzing
Inter-Application Communication in Android, which
considered two types of analysis: Intent analysis and
Component analysis. In Intent analysis, ComDroid
statically analyzes method invocation to a depth of
one method call. It checks whether the intent has
been made explicit; whether the intent has an action;
whether the intent has any flags set; and whether the
intent has any extra data. In Component analysis,
ComDroid examines application’s manifest file to get

components and translates dalvik instructions to get
information about each component. ComDroid treats
activities and their aliases as separate components
because an alias field can increase the exposure
surface of the component. It generates a warning about
a potential intent spoofing attack, when it detects that
a public component is protected with no permission
or a weak permission. ComDroid is a tool that detects
application communication vulnerabilities and could
be used by developers and reviewers to analyze their
own applications before release. The main purpose of
this tool comes from the fact that Android’s message
passing system can become an attack if used incorrectly
(personal data loss, information leakage, phishing, etc.)
These vulnerabilities stem mainly from the fact that
Intents can be used for both intra and inter application
communication. However, in the event of verification
of the existence of attacks: ComDroid issues warnings
and not verify the existence of attacks. For instance,
some components are intentionally made public for
the purpose of inter-application collaboration. It is not
possible to infer the developer’s intention when making
a component public. It is the role of the developer to
verify the veracity of the warnings.

Techniques for Detecting Complex Data-Leak
Patterns
Xiaokui et al. (2015) designed fast detection of
transformed data Leaks which utilized sequence
alignment techniques for detecting complex data-
leak patterns. The algorithm was designed for
detecting long and in exact sensitive data patterns.
This detection is paired with a comparable sampling
algorithm, which allows one to compare the similarity
of two separately sampled sequences. The solution to
the detection of transformed data leaks is a sequence
alignment algorithm, executed on the sampled
sensitive data sequence and the sampled content being
inspected. The alignment produces scores indicating
the amount of sensitive data contained in the content
and this alignment based solution measures the
order of n-grams. It also handles arbitrary variations
of patterns without an explicit specification of all
possible variation patterns. Experiments show that
their alignment method substantially outperforms the
set intersection method in terms of detection accuracy
in a multitude of transformed data leak scenarios.
This system was able to achieve good detection
accuracy in recognizing transformed leaks. However,
detecting the exposure of sensitive information is
challenging due to data transformation in the content.
Transformations (such as insertion, deletion) result in
highly unpredictable leak patterns.

18Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

Intellidroid
Wong et al. (2016) designed Intellidroid, which is a
targeted input generator for the dynamic analysis
of android malware. IntelliDroid acts in 6 steps viz.
Specifying target APIs, Identifying paths to target
APIs, Extracting call path constraints, Extracting
event chains, Determining run-time constraints and
Input-injection to trigger call paths. IntelliDroid
is a generic tool that generates input specific for
a dynamic analysis tool to perform analysis more
precisely by reducing false positives. Instead of static
or dynamic analysis, it performed targeted analysis. It
is achieved by preliminarily doing background study
about the dynamic analysis tool and static analysis
of the application given as input to the dynamic
analysis tool. It helps in triggering target APIs and
consecutively leads to more efficient and effective
dynamic analysis. IntelliDroid is not capable of
creating inputs for encrypted and hashed functions.
The extracted constraints are sometimes very complex
such as trigonometric functions. It cannot be resolved
by constraint solver. Currently, human intervention is
required to solve such constraints.

Intent Droid
Hay et al. (2015) designed IntentDroid, it is for
dynamic detection of inter-application communication
vulnerabilities in android. IntentDroid tests the
applications in three phases viz: Instrumentation,
Testing and Reporting. In the instrumentation phase,
the app under analysis is instrumented to store library
calls and access to user-supplied data. In the testing
phase, to detect whether a vulnerability exists in the
app or not based on IntentDroid has created attack
scenarios. In the Reporting phase, IntentDroid reports
the number of vulnerabilities present in an app after
implementing all the possible attack scenarios on the
app. IntentDroid is a framework that dynamically
examines Android apps for IAC (Inter Application
Communication). It created attack scenario for
8 vulnerabilities viz. Cross-Site Scripting, SQL
Injection, Unsafe Reflections, UI (User-Interface)
Spoofing, Fragment Injection, Java Crashing, Native
Memory corruption and File Manipulation. It analyzes
Activity component of apps by implementing attack
scenarios in a way to obtain effective path coverage
with minimum overhead. However, IntentDroid does
not test Services, Broadcast Receivers and Content
Providers for IAC vulnerabilities and does not consider
multi-app attack.

FlaskDroid
Bugiel et al. (2013) developed FlaskDroid for Flexible
and Fine-Grained Mandatory Access Control on
Android on Di- verse Security and Privacy Policies.
FlaskDroid plants various Object Managers at
middleware and kernel layer that are responsible for
assigning security context to objects. Related policies
are managed by security servers deployed at different
layers. The object manager makes access control
decisions by using security servers at their respective
layer. Also the deployed policies at both the layers are
synchronized meaning change of policy in one layers,
automatically reflect in another layer. FlaskDroid is
policy-driven tool that provides security for kernel
resources (like files, IPC, etc.) as well as middleware
resources (like Intents, Content Providers, etc.). The
security enforcement is through providing mandatory
access control on both middleware and kernel layers
of Android simultaneously. They extended Android’s
middleware layer with type enforcement and present a
new policy language to capture the semantics of this
layer. However, many false alarms while detecting
confused deputy and collusion attacks. As FlaskDroid
relies on application inputs/outputs and does not
consider the information flow within apps. Access
control rules are human user trail based.

XManDroid
Bugiel et al. (2011) presented XManDroid basically for
a New Android Eution to Mitigate Privilege Escalation
Attacks. XManDroid consists of three approaches
(1) Application Installer. This is responsible for
installation and uninstallation of applications. (2)
System Policy Installer. This is responsible for the
installation of explicitly defined list of system policies
in the Android middleware. (3) Runtime Monitor.
This is responsible for enforcing mandatory access
control in Android like permissions checked at the
interface, decisions taken whether to allow an ICC
or not based on the information about installed apps
and their communication. This approach is used
for defining rules in system policies. XmanDroid
(eXtended Monitoring on Android) is a dynamic
framework that extends the monitoring mechanism
of Android to detect and prevent application-level
privilege escalation attacks. It is based on runtime
system-centric policies. Two types of application-level
privilege escalation attacks are handled by XmanDroid
viz Confused Deputy attacks and Colluding attacks.
Single app analysis is missing, that is, XManDroid
cannot detect malicious app, as applications within
a single sandbox have equal privileges and cannot
perform privilege escalation.

19Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

AppAudi
Mingyuan et al. (2015) proposed AppAudi for
Effective Real-time Android Application Auditing.
The mechanism is in three-fold, that is (1) A propose
approximated execution, a novel dynamic analysis
that can execute part of a program while performing
customized checks on its program state at each step.
(2) an Android app auditing tool that can check apps
effectively and efficiently. AppAudit embodies an API
analysis to select suspicious functions and then relies
on the approximated executor to prune false positives.
(3) AppAudit to examine more than 400 free Android
apps collected from various markets. This tool
successfully identifies 30 data leaks. First, app market
operators require automatic tools to detect and remove
data-leaking apps. Second, app developers need to
perform self-check before publishing apps. Third,
mobile users expect to know if an app is leaking data
before installation. AppAudit serves as an effective
tool to identify dataleaking apps and provides
implications to design promising runtime techniques
against data leaks. However, AppAudit also uncovers
30 data leaks in real apps but only identifying data
leak by estimation.

Detection and Analysis of Malware for Smart
Devices
Suarez et al. (2014) presented Eution, Detection
and Analysis of Malware for Smart Devices. This is
an article that examines the problem of malware in
smart devices and recent progress made in detection
techniques. It first presents a detailed analysis on how
malware has eved over the last years for the most
popular platforms. We identify exhibited behaviors,
pursued goals, infection and distribution strategies,
etc. and provide numerous examples through case
studies of the most relevant specimens. The Analysis
is strongly biased towards smartphones, since they
currently are the most extended class of smart devices
and the platform of choice for malware developers and
security researchers. This can help to better understand
the problem and to improve upon current defense
techniques. This taxonomy is only complemented with
additional elements, such as where the monitoring and
analysis tasks takes place, or the specific detection
technique used.

Android Application Security
William et. al. (2011) presented A Study of Android
Application Security. These findings of exposure
of phone identifiers and location are consistent with
previous studies. Their analysis framework allows

us to observe not only the existence of dangerous
functionality, but also how it occurs within the context
of the application. The findings of exposure of phone
identifiers and location are consistent with previous
studies. Their analysis framework gives room for
observations not only the existence of dangerous
functionality, but also how it occurs within the context
of the application. The studied applications were
selected with a bias towards popularity, the program
analysis tool cannot compute data and control flows for
IPC between components; and source code recovery
failures interrupt data and control flows. Missing data
and control flows may lead to false negatives. It did not
find evidence of malware or exploitable vulnerabilities
in the studied applications.

DREBIN
Daniel et al. (2014) developed DREBIN. This is an
effective and explainable detection of android malware
in pocket. The method employs a broad static analysis
that extracts feature sets from different sources
and analyzes these in an expressive vector space.
This consists of three modules as follows: a) Broad
static analysis. In the first step, DREBIN statically
inspects a given Android application and extracts
different feature sets from the application’s manifest
and dexcode. (b) Embedding in vector space. The
extracted feature sets are then mapped to a joint vector
space, where patterns and combinations of the features
can be analyzed geometrically. (c) Learning-based
detection. The embedding of the feature sets enables
us to identify malware using efficient techniques of
machine learning, such as linear Support Vector
Machines. (d) In the last step, features contributing to
the detection of a malicious application are identified
and presented to the user for explaining the detection
process. DREBIN cannot generally prohibit infections
with malicious applications, as it builds on concepts of
static analysis and lacks dynamic inspection.

MockDroid
Alastair et al. (2011) designed MockDroid for trading
privacy for application functionality on smartphones.
MockDroid prototype is based on Android 2.2.1
and runs on the Google/HTC Nexus One handset.
The choice of error depends on the API call under
consideration. This approach allows users to revoke
access to particular resources at run-time, encouraging
users to consider the tradeoff between functionality
and the disclosure of personal information whilst they
use an application. However, this method has not been
tested on other version of handsets.

20Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

PiOS
Manuel et al. (2017) developed PiOS for Detecting
Privacy Leaks in iOS Applications. PiOS uses
static analysis to check applications for the presence
of code paths where an application first accesses
sensitive information and subsequently transmits this
information over the network. Since no source code
is available, PiOS has to perform its analysis directly
on the binaries. PiOS employs backward slicing to
calculate the contents of these registers at every call site
to the objmsgSend function in an application binary.
PiOS detect privacy leaks in applications written for
iOS. PiOS is able to determine the type of the receiver
(R0) and the value of the selector (R1). It annotates
the call site with the specific class and method that
will be invoked when the program is executed. It is not
straightforward to extract the application’s decryption
key from the device (and the operating system’s secure
key chain). Furthermore, to use these keys, one would
also have to implement the proper decryption routines.
PiOS does not track (the addresses of) individual
instances of classes allocated during runtime. Also,
statically determining the receiver and selector for
every call to the objcmsgSend function is not always
possible.

DroidRay
Min et al. (2014) proposed DroidRay for a Security
Evaluation System for Customized Android
Firmwares. DroidRay uses both static and dynamic
methodologies to analyze the system security of
the Android firmware. Specifically, three forms of
security analysis were carried out: (a) system signature
vulnerability detection (b) network security analysis
and (c) privilege escalation Vulnerability detection
system levels. DroidRay is a security evaluation
system for customized Android firmware. The system
uses Android firmwares as the input, then the system
analyzes both Android firmwares as well as pre-
installed applications. After the analysis, DroidRay
outputs the analysis report of these firmwares and
pre-installed applications. DroidRay is an effective
tool to combat this new form of malware spreading.
The system uses both static and dynamic analyses to
evaluate the firmware security on application level
and system level. A comprehensive study on 24,009
pre-installed applications and 250 Android firmware
systems were carried out and discover compromised
firmwares can contaminate the system and inject new
malware into devices. However, DroidRay only retains
the applications which have dangerous permissions
(e.g., sending SMS message) or silent installation
behavior.

Dissecting Android Malware for Characterization
and Eution
Yajin et al. (2012) proposed Dissecting Android
Malware for Characterization and Eution. It focuses on
the evaluation of Android platform and characterizes
the existing Android malware. The paper presents
a systematic characterization of existing Android
malware. The characterization is made possible with
our more than one-year effort in collecting 1260
Android malware samples in 49 different families,
which covers the majority of existing Android
malware, ranging from its debut in August 2010 to
recent ones in October 2011. The challenges lie in the
large ume of new apps created on a daily basis as well
as the accuracy needed for repackaging detection and
so there is no clear solution. The defense capability
is largely constrained by the limited understanding of
these emerging mobile malware and the lack of timely
access to related samples.

MOSES
Yury et al. (2014) designed MOSES for Supporting
and Enforcing Security Profiles on Smart Phones.
A policy-based framework for enforcing software
isolation of applications and data on the Android
platform using different modules: user registration
and authentication, security profiles create, check
error process and MOSES manager process. MOSES
is the dynamic tool used for switching from one
security profile to another, MOSES implements soft
virtualization through controlled software isolation.
Each security profile (SP) can be associated to one
or more contexts that determine when the profiles
become active. Both contexts and profiles can be easily
and dynamically specified by end users. MOSES
provides a Graphical User Interface for this purpose.
Switching between security profiles can require user
interaction or be automatic, efficient and transparent
to the user. Leakage of sensitive information can be
greatly reduced. Different OS can run separately at
the same time, However, this approach fails to provide
users visibility into how third-party applications have
access to information.

AndroSAT
Saurabh et al. (2014) developed AndroSAT ford
Security Analysis Tool for Android Applications. This
is a framework that allows one to efficiently experiment
with different security aspects of Android Apps
through the integration of (i) a static analysis module
that scans Android Apps for malicious patterns. The
static analysis process inves several steps such as

21Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

n-gram analysis of dexfiles, de-compilation of the App,
pattern search and analysis of the AndroidManifest
file; (ii) a dynamic analysis sandbox that executes
Android Apps in a controlled virtual environment,
which logs low-level interactions with the operating
system. The effectiveness of the developed framework
is confirmed by testing it on popular Apps collected
from F-Droid and malware samples obtained from a
third party and the Android Malware Genome Project
dataset. AndroSAT, is that the developed sandbox
allows not only for observing and recording of relevant
activities performed by the apps (e.g., data sent or
received over the network, data read from or written
to files and sent text messages) but also manipulating,
as well as instrumenting the Android emulator. These
modifications were made to the Android emulator in
order to evade simple detection techniques used by
malware writers. The implementation prototype does
not allow for more useful add-ons that can be used
to provide further investigation of the security of
Android applications.

AndRadar
Martina et al. (2014) designed AndRadar for Fast
Discovery of Android Applications in Alternative
Markets. AndRadar was a prototype configured to
discover apps by their package name as the monitored
markets distinguish apps by this identifier. AndRadar
exposed the publishing patterns followed by authors
of malicious applications on sixteen markets.
Moreover, their evaluation shows that AndRadar
makes harvesting marketplaces for known malicious
or unwanted applications fast and convenient. In order
to attract users and lure them into downloading their
apps, malicious authors need an identifiable brand,
e.g. by piggybacking on popular apps from the official
market. Thus, if malicious authors decide to evade
the discovery of their apps by AndRadar, this would
invariably lower their visibility to users.

AndroZoo
Kevin et al. (2016) developed AndroZoo for Collecting
Millions of Android Apps for the Research Community.
This is a dedicated web crawler using the scrappy
framework. Every candidate app which is available
for free runs through a processing pipeline that: 1.
ensures this app has not already been downloaded; 2.
Downloads the file; 3. computes its SHA256 checksum;
4. Archives the file. AndroZoo presented dataset of
millions of Android apps collected from various data
sources. They make this dataset readily available to
the community to contribute to more generalizable,

reliable and reproducible studies based on a large-
scale, representative and up-to-date samples. Indeed,
the crawlers are managed as a low-priority research
project rather than as a mission-critical production
system. Collection was regularly interrupted for days,
weeks, or even a few months, for issues such as lack
of storage space or more generally, limited workforce
to invest. In the course of the review, it was found that
several market owners took various steps in order to
prevent their market from being automatically mined.
Thus, for such markets, it cannot guarantee that their
whole content has been retrieved.

AsDroid
Jianjun et al. (2014) designed AsDroid for Detecting
Stealthy Behaviors in Android Applications by User
Interface and Program Behavior Contradiction. This
is an implementation prototype called AsDroid (Anti-
Stealth Droid). A method to transform the DEX file
of an app to a JAR file with dex2jar and then use
WALA as the analysis engine. The implementation is
mainly on top of WALA. Also, collected apps from
three different sources. This aim to detect those with
the following stealthy behavior: SMS sends, phone
calls, HTTP connections and component installations.
Hence, it only focus on those having the permissions
for such behaviors. The implementation of prototype
called AsDroid (Anti-Stealth Droid) is a pool of 182
apps that have the permissions to perform the malicious
operations of interest was collected. AsDroid reports
that 113 of them have stealthy behaviors, with 28 false
positives and 11 false negatives. Currently, to avoid
false positives, AsDroid relies on certain rules in
detecting intent correlation and avoids reporting some
intents incompatible with UI if their correlated intents
are compatible. This seems to be working engine given
that Android malwares are still in their early stage.
AsDroid currently cannot reason about correlations
through external resources, leading to false positives.
AsDroid cannot analyze dynamically generated text
associated with a UI component.

Taint Analysis
Christian et al. (2013) developed an Highly Precise
Taint Analysis for Android applications. FlowDroid
method, a novel and highly precise static taint-analysis
tool for Android applications. Showed that many
existing approaches do not adequately model Android-
specific challenges like the application lifecycle or
callback methods, leading to either missed leaks or
false positives. FlowDroid can thus generate a main
method in which every order of individual component
lifecycles and callbacks is possible and it does not

22Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

need to simulate all possible paths. FlowDroid also
has a higher precision resulting in less false positives.
FlowDroid extends the Soot framework which
provides important prerequisites for a precise analysis,
in particular a very accurate call graph. At the moment
FlowDroid ignores reflective calls, which is unsound.
While specialized static string analyses can be used to
simulate reflection to some extent. Past research has
found such analyses to be incomplete, as reflective call
targets are often determined by external configuration
files.

DroidSwan
Babu et al. (2015) designed DroidSwan for detecting
malicious android applications based on static feature
analysis. This an approach which extracts various
features from Android Application Package file (APK)
using static analysis and subsequently classifies using
machine learning techniques. The analysis is carried
out using various machine learning algorithms
with both weighted and non-weighted approaches.
DroidSwan detects possible collusion attack. Rather
than looking for over privileged applications, under
privileged applications were detected, that is, the
application declaring less permissions than what it
actually required. The under privileged application
then gets required privileges at runtime with the
help of another application. The drawback with this
approach is the high false positive rate. The reason for
high false positive rate is that many developers declare
majority of the permissions available irrespective of
their usage by the application.

Crowdroid
Iker et al. (2011) proposed Crowdroid. This is a
Behavior-Based Malware Detection System for
Android. The method shown to be an effective means
of isolating the malware and alerting the users of a
downloaded malware. This shows the potential for
avoiding the spreading of a detected malware to a
larger community. In collaboration with the Android
users community, it will be capable of distinguishing
between benign and malicious applications of the same
name and version, detecting anomalous behavior of
known applications. There is challenge of convincing
the Android user community to install the Crowdroid
application. It need to manage the perception of loss
of privacy when supporting research community
with their behavior information, against the benefit of
having access to up-to-date behavioral-based detected
malware statistics.

ARP
Blagoj et al (2015) presented Real-World ARP Attacks
and Packet Sniffing, Detection and Prevention on
Windows and Android Devices, It uses WireShark
filters and so, filtered the communication down to http
POST methods which displayed us with the victim’s
login and password on a test page. The paper explains
the purpose and the need of the Address Resolution
Protocol (ARP) and different types of attacks that can
occur due to its stateless nature. It exhibit a real world
example of a Man-in-the-Middle (MitM) attack by
sniffing http logins of a Windows PC and an Android
device and then suggest methods of both detecting
and preventing the attack. However, this approach is
limited with methods and applications to detect and
prevent ARP attacks.

Fraud Detection in Information Leakage
Poonam et al. (2012) presented Fraud Detection in
Information Leakage with methods to handle such
information leakage namely watermarking and
Identifying Guilty agent using probability. The system
then extracts the requested data from the main database
and performs the addition of fake records according to
the request. It then provides the data to the agent. If
any of the agent leaks the data to some unauthorized
vendor, then the vendor will try to establish a contact
with the customers by sending them advertising
mails. The job of the mail detection system is to
monitor these incoming mails on the email addresses
of the fake records continuously. If the system detects
unauthorized mail crossing the threshold value, then
it starts its process of probability calculation. The
threshold value is the minimum number of mails
which have to be detected to trigger the calculation. It
will check the presence of these fake records in each of
the agent and accordingly will evaluate the probability
of each agent being guilty. The system basically deals
with customer information like email-IDs. When
customer data is leaked, the third party tries to create
contact with these customers through mail. This mail
detection system keeps a track of the fake email aids
added at the time of data allocation and distribution
to agent and when an unidentified mail having
advertisement content arrives in the mailbox, the
system informs the administrator about it. However,
there are two major disadvantages of this algorithm:
It inves some modification of data i.e. making the data
less sensitive by altering attributes of the data. This
alteration of data is called perturbation. However in
some cases, it is important not to alter the original
distributed data. For example, if an agent is doing
the payroll, he must have the exact salary. We cannot
modify the salary in this case. And second problem is

23Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

that these watermarks can sometimes destroyed if the
recipient is malicious.

Systematic Detection of Capability Leaks in Stock
Android Smartphones
Michael et al. (2012) Systematic Detection of
Capability Leaks in Stock Android Smartphones. It
employs inter procedural data flow analysis techniques
to systematically expose possible capability leaks
where an untrusted app can obtain unauthorized
access to sensitive data or privileged actions. The
system distinguishes two different categories. Explicit
capability leaks allow an app to successfully access
certain permissions by exploiting some publicly-
accessible interfaces or services without actually
requesting these permissions by itself. Implicit
capability leaks allow the same, but instead of
exploiting some public interfaces or services, permit
an app to acquire or inherit permissions from another
app with the same signing key. The main benefit of
performing this kind of analysis is that it models all
data flow assignments, not just those relating to branch
conditions. As a result, it can trace the provenance
of any arguments to the dangerous method. With
such information, we can characterize the severity
of the capability leak. A capability leak that directly
passes through arguments from the external caller is
obviously worse than one that only allows invocation
with constant values and this design can distinguish
between the two. Given that path feasibility is
undecidable, the design errs on the side of caution: it
will not claim a feasible path is infeasible, but might
claim the reverse is true. As a result, this argument
information is valuable, as it can be used to generate a
concrete test case that verifies the detected capability
leak. However, since many pre-loaded apps have the
corresponding permissions, the malicious app will
have gained access to a high-privilege capability if it
can cause one of these apps to invoke the desired API
on its behalf. This approach does not know what kind
of dangerous call lies at the end of the path beforehand.
Allowing unrelated permission checks to mark whole
paths as infeasible would therefore introduce false
negatives.

DroidBox
Naresh et al. (2013) described a review On Data
Leakage Detection and Presented a mechanism for
proof of ownership based on the secure embedding
of a robust imperceptible watermark in relational
data. The watermarking of relational database as a
constraint optimization problem were formulated and
discuss efficient techniques to solve the optimization
problem and handle the constraint by proposing data

allocation strategies that improve the probability
of identifying leakages. The goal of this approach
is to detect when the distributor’s sensitive data has
been leaked by agents and if possible to identify the
agent that leaked the data by considering applications
where the original sensitive data cannot be perturbed.
Perturbation is a very useful technique where the
data is modified and made less sensitive before being
handed to agents. However, in most cases, individual
objects are perturbed, e.g., by adding random noise to
sensitive salaries, or adding a watermark to an image.

Detection and Avoidance of Data Leakage
Sandesh et al. (2012) presented Detection and
Avoidance of Data Leakage. The aim was to detect the
leakage of data while transmitting the data from server
to client via various routers by identifying the guilty
router and also avoiding the leakage. This approach
study unobtrusive techniques for detecting leakage of
a set of objects or records. Specifically, it study the
following scenario: after giving a set of objects to
agents, the distributor discovers some of those same
objects in an unauthorized place. (For example, the
data may be found on a website, or may be obtained
through a legal discovery process). At this point, the
distributor can assess the likelihood that the leaked
data came from one or more agents, as opposed to
having been independently gathered by other means.
Using an analogy with cookies stolen from a cookie
jar, if Rama is caught with a single cookie, he can
argue that a friend gave him the cookie. But if Rama
is caught with five cookies, it will be much harder for
him to argue that his hands were not in the cookie jar.
However, in many cases, there is a need to work with
the agents that may not be trusted and it may not be
certain if a leaked object came from an agent or from
some other source, since certain data cannot admit
watermarks.

OCR
Yeon-kyung et al. (2015) proposed Stealthy
Information Leakage from Android Smartphone
through Screenshot and OCR that utilized one attack
path, screen bitmap memory, in order to propose
a collection system that retrieves IMEI and IMSI
information through screenshot image and extracts
the information from the image by OCR (Optical
Character Recognition) automatically. Furthermore, it
found out that sans font showed very low recognition
rate while serif and mono showed relatively high
recognition rate. A screenshot activity from users
was also hiding. Therefore, the proposed methods
were used to leak any information without worry
of detection by DroidBox, users, text-based packet

24Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

inspections tools. However, also found out that sans
font showed a very low recognition rate while serif
and mono showed a relatively high recognition rate
only with font size bigger than 12.

DroidData
Hani et al. (2017) developed DroidData: Tracking
and Monitoring Data Transmission in the Android
Operating System. DroidData, is a novel tool that
uses both static and dynamic analysis to track and
monitor data transmission in Android applications.
This approach minimizes false positives and increases
code coverage to catch the maximum number of data
leaks. This novel method of combining two types
of analyses, which allows DroidData to catch more
data transmissions than existing works. A well-
developed and easy-to-use user-interface that allows
users to understand data transmissions and block
applications that transmit their personal information
inappropriately. More informative results about the
transmissions than other tools, providing information
such as the security of the data transmission. However,
DroidData, like most other current analysis tools for
Android, is unable to track implicit, or control, data
flows. Some malicious code uses implicit flows to
exploit security mechanisms and avoid detection, so
this is something to protect against in the future.

Taintdroid’s Functionality And Crowd-Sourcing
Tool
Ferreira et al. (2015) presented Secrecy that uses
TaintDroid’s functionality and combines it with
a crowd-sourcing tool where users can share
information about security issues they experienced
with an application and provide a rating for other
users to consider before downloading the application.
This has the disadvantage according to their own
investigation showed that only five out of one hundred
of their participants rated the app. rating an application
is often considered inconvenient by users and is not
always accurate, based on varying opinions and
understandings of privacy by different users.

AppIntent
Yang et al. (2013) presented AppIntent that
uses symbolic execution to determine the GUI
manipulations that lead up to a data transmission
to allow an expert to determine whether is intended
by the user or not. This draws a distinction between
true data leaks and transmissions that are necessary
for application functionality. It pioneers a technique
called Event-space Constraint Guided Symbolic
Execution that identifies all possible execution paths
using static analysis, then identifies critical events

to the transmission using an event constraint graph.
It then uses dynamic analysis to determine what UI
manipulations led to the data transmission. While this
tool is unique in seeking to determine whether data
transmission is a privacy leak, it requires that a human
analyst be presented with the results of the dynamic
analysis to determine user intention and they note
that it is probably impossible for that process to be
completely automated.

Comnoid
Sunita et al. (2017) proposed Comnoid: Information
Leakage Detection using Data Flow Analysis on
Android Devices. Comnoid is based on FlowDroid
open source tool. It takes Android application apk
file as input and extracts Dex file, Manifest file and
Xml layout files for processing. Comnoid tool was
developed to perform Static Taint analysis with inter
app analysis which will take Android application APK
files as an input and produce a data leakage report.
However, it suffers with the drawbacks which are
common to that of other static analysis tools like it is
not able to analyse the reflexive calls and dynamically
loaded code.

RECOMMENDATION
For future work, more Scholarly literature can be
carried out thoroughly to summarize their result in a
form that will develop research questions of different
types regarding the best method that can be advanced
on and investigating on basis for designing a research
on Content Analyzers for Information Leakage
Detection and Prevention Android Based-Devices.
We believed that if this related works is reviewed
accordingly, the best method can be combined to be
implemented and false positives will be minimized
and in turn lead to increase in code coverage to detect
the maximum number of data leaks. Furthermore,
combining different techniques reviews could enhance
the capacity for the developed contentAnalyser to
detect and prevent more information leakages on
smartphones than previously considered works.

CONCLUSION
In this paper, we presented the literature reviews with
their different methods, strengths and weaknesses
that will guide in the designing of Content Analyzer
for Information Leakage Detection and Prevention
on android-based devices. The extent of the
implementation of these reviews in the development
of a ContentAnalyser for smart phones will also allow
for various debate and sensitization in the disciplines
and the body of knowledge of computer science

25Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

REFERENCES
Adam, P., Fuchs, Avik, C. and Jeffrey, S. (2009).

SCanDroid; Automated Security Certification of
Android Applications. Technical Report CS-TR-4991,
Department of Computer Science, University of
Maryland, 12(1):103-108.

Adrienne, P. F., Erika, C, Steve, H., Dawn, S and
David, W. (2011). Android Permissions Demystified.
Proceedings of the 18th ACM Conference on
Computer and Communications Security, 11(1): 627-
638.

Agrawal R. and Srikant R. (2000). Privacy-preserving
data mining, in Proceedings of the 2000 ACM
SIGMOD International conference,:439-450.

Agrawal R., Gehrke J. and Gunopulos D. (1998)
Automatic subspace clustering of high dimensional
data for data mining applications, in Proceedings
of the ACM SIGMOD International Conference
on Management of Data: 94–105.

Alassi D. and Alhajj R. (2013) Effectiveness of
template detection on noise reduction and websites
summarization, Information Sciences, 219: 41–72.

Anand, S., Naik, M., Yang, H. and Harrold, M.
(2012). Automated concolic testing of smartphone
apps. Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of
Software Engineering. 12:59.

Andrei, S. and Andrew, C. (2003). Language-based
information-flow security. IEEE Journal of Selected
Areas in Communication, 21(1): 21(1): 5–19.

Aristide, F., Kimberly, T., Salahuddin, J., Khan, A. and
Lorenzo, C. (2014). CopperDroid: In Proceedings
of the 2007 USENIX Annual Technical Conference.
233–246.

Arzt, S. (2009). FlowDroid, Precise Context, Flow,
Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps,. Understanding
Android Security, IEEE Security and Privacy. 7(1):
50-57.

Asavoae, I. M., Blasco, J., Chen T. M., Kalutarage,
H. K., Muttik, I., Nguyen, H. N., Roggenbach,
M. and haikh, S. A. (2016). Towards automated
android app collusion detection: Proceedings of
the Workshop on innovations in Mobile Privacy
and Security IMPS at ESSoS16, London, UK.
Assessment, 5th International Conference DIMVA):
143– 163.

Azim T. and Neamtiu I. (2013). Targeted and depth-
first exploration for systematic testing of Android
apps, in Proceedings of the ACM SIGPLAN
Conference on Object Oriented Programming
Systems Languages & Applications, Indianapolis,
Ind, USA : 641–660.

Babcock B., Datar M., Motwani R. and O’Callaghan
L.,(2003) Maintaining variance and k-medians

over data stream windows, in Proceedings of the
Twenty second ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems,
PODS :234–243.

Backes, M., Kopf, B. and Rybalchenko, A. (2009).
Automatic discovery and quantification of
information leaks. In Proceedings of the 2009 30th
IEEE Symposium on Security and Privacy. IEEE
Computer Society, Washington, DC, US :141–153.

Bayer, U., Moser, A., Krugel, C. and Kirda, E. (2006).
Dynamic analysis of malicious code. Journal in
Computer Virology 2(1):67–77.

Bhoraskar R., Han S., Jeon J. and Brahmastra (2014):
driving apps to test the security of third-party
components, in Proceedings of the 23rd USENIX
Conference on Security Symposium, San Diego,
Calif, USA: 1021–1036.

Bläsing T., Batyuk L., A.-D. Schmidt, S. A. Camtepe
and S. Albayrak (2010). An Android Application
Sandbox System for suspicious software detection,
in Proceedings of the 5th International Conference
on Malicious and Unwanted Software (MALWARE
‘10) IEEE, Lorraine, France: 55–62.

Burguera, I. Zurutuza, U. and Nadjm-Tehrani, S. (2011).
Crowdroid: behavior-based malware detection system
for Android: Proceedings of the 1st ACM Workshop
on Security and Privacy in Smartphones and Mobile
Devices Chicago, Ill, USA. 11: 15–26.

Cacheda, F. and Vina, A. (2001). Experiencies
retrieving information in the World Wide Web.
In Proceedings of the Sixth IEEE Symposium on
Computers and Communications (ISCC 2001).
IEEE Computer Society :72–79.

Carvalho, V., Balasubramanyan, R. and Cohen, W.
(2009) Information Leaks and Suggestions: A Case
Study using Mozilla Thunderbird. Paper presented
at the CEAS 2009 - Sixth Conference on Email and
Anti-Spam, pp 46-53.

Cavallaro, L., Saxena, P. and Sekar, R. (2008). On the
limits of information flow techniques for malware
analysis and containment. In Detection of Intrusions
and Malware and Vulnerability.

Chang B. and Jeong Y. (2011). An efficient network
attack visualization using security quad and cube,
ETRI Journal, 33(5):770–779.

Chen K., Johnson H., D’Silva V. (2013). Contextual
Policy Enforcement in Android Applications with
Permission Event Graphs, in Proceedings of the 20th
Annual Network and Distributed System Security
Symposium (NDSS ‘13) San Diego, Calif, USA.

Chen, H. and Wagner, D. (2002). MOPS: an
infrastructure for examining security properties of
software. In Proceedings of the 9th ACM conference
on Computer and communications security.

26Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

Cohen W. W. (1996).Learning rules that classify e-mail,
in Proceedings of the AAAI Spring Symposium on
Machine Learning in Information Access: 18–25.

Computer and Communications Security (CCS). 116–
127.

Cui J., Zhang Y., Cai Z., Liu A. and Li Y. (2018). Securing
display path for security-sensitive applications on
mobile devices, Computers, Materials and Continua,
55(1): 17–35.

Dash M., Choi K., Scheuermann P. and Liu H. (2002).
Feature selection for clustering - A filter solution,
in Proceedings of the 2nd IEEE International
Conference on Data Mining, ICDM 2(1):115–122.

DeBlasio J., Savage S., Voelker G. and Snoeren A.
(2017). Tripwire: Inferring internet site compromise,
in Proceedings of the IMC ‘17, pp 17: 1–14.

Deerwester S., Dumais T., Furnas. W., Landauer T. and
Harshman R. (1990). Indexing by latent semantic
analysis. Journal of the Association for Information
Science and Technology, 41(6):391–407.

Egele, M. Scholte, T. Kirda, E. and Kruegel, C. (2012).
A survey on automated dynamic malware-analysis
techniques and tools, ACM Computing Surveys,
44(2), Article 6, 42pp.

Enck W. Gilbert P. Chun BG. Cox LP. Jung J.
McDaniel P. (2010). Taintdroid: An information-flow
tracking system for real time privacy monitoring
on smartphones. OSDI’10 Proceedings of the 9th
USENIX conference on Operating systems design
and implementation. 10: 393–407.

Enck, W., Gilbert, P. and Han S. (2014). TaintDroid:
an information flow tracking system for real-
time privacy monitoring on smartphones, ACM
Transactions on Computer Systems, 32(2): 5.

Feng, H., Giffin, J., Huang, Y., Jha, S., Lee, W. and
Miller, B. (2004). Formalizing sensitivity in static
analysis for intrusion detection. In IEEE Symposium
on Security and Privacy. 194 – 208.

Ferreira, D., Kostakos, V., Beresford, A., Lindquist,
J. and Dey A. (2015). Securacy: An Empirical
Investigation of Android Applications’ Network
Usage, Privacy and Security. Proceedings of the 8th
ACM Conference on Security & Privacy in Wireless
and Mobile Networks, New York: 22-26.

Fritz D., Bierma M., Gustafson E., Erickson J. and Choe
Y. (2014). Andlantis: large-scale Android dynamic
analysis, in Proceedings of the 3rd Workshop on
Mobile Security Technologies (MoST ‘14) San Jose,
Calif, USA.

Gilbert P., Chun G., Cox P. and Jung J. (2011). Vision:
automated security validation of mobile apps at app
markets, in Proceedings of the 2nd International
Workshop on Mobile Cloud Computing and Services
(MCS ‘11) ACM, Bethesda, Md, USA:21–26.

Goyal A., Bonchi F. and Lakshmanan S. (2012) On
minimizing budget and time in influence propagation
over social networks, Social Network Analysis and
Mining,:1–14.

Guha S., Rastogi R. and Shim K. (1998) Cure: an
efficient clustering algorithm for large databases, in
Proceedings of 1998 ACM SIGMOD International
Conference Management of Data,: 73–84.

Haritha, R. and Bhagavan, K. (2019). Anti-Reverse
Engineering Techniques Employed by Malware:
International Journal of Innovative Technology and
Exploring Engineering (IJITEE) (8):2278-3075.

Hinneburg A. and Keim D. (1999) Optimal grid-
clustering: towards breaking the curse of
dimensionality in high-dimensional clustering, in
Proceedings of the 25th VLDB Conference,: 506–
517.

Huang X., Lu Y., Li D. and Ma M. (2018) A novel
mechanism for fast detection of transformed data
leakage, IEEE Access, 1: 1–11.

Hyde R., Angelov P. and MacKenzie A. (2017). Fully
online clustering of eving data streams into arbitrarily
shaped clusters, Information Sciences, 382-383.

Intrusions and Malware & Vulnerability Assessment
(DIMVA). 17–36.

Islam M., Seera M. and Loo C. (2017). A robust
incremental clustering-based facial feature tracking.
Applied Soft Computing, 53:34–44.

Jarabek C., Barrera D. and Aycock J. (2012). ThinAV:
truly lightweight mobile cloud-based anti-malware,
In: Proceedings of the 28th Annual Computer
Security Applications Conference (ACSAC ‘12)
ACM, Los Angeles, Calif, USA: 209–218.

Jiang F., Fu Y., Gupta B. (2018) Deep learning based multi-
channel intelligent attack detection for data security.
IEEE Transactions on Sustainable Computing. 99:1-
9 DOI:10.1109/TSUSC.2018.2793284

Jin R., Si L., Hauptmann A. and Callan J. (2002).
Language model for IR using collection information,
in Proceedings of the 25th annual international
ACM SIGIR conference,: 419-420.

Kalidindi S., Niezgoda S., Landi G., Vachhani S.
and Fast T. (2010)A novel framework for building
materials knowledge systems, Computers,
Materials and Continua, 17(2):103–125.

Katz G., Elovici Y. and Shapira Coban B. (2014) A
context based model for data leakage prevention,
Information Sciences, 262:137–158.

Katz S. M. (1987) Estimation of probabilities from
sparse data for the language model component of
a speech recognizer, IEEE Transactions on Signal
Processing, 35(3): 400-401.

Kim, H. C., Keromytis, A. D., Covington, M. and
Sahita, R. (2009). Capturing information flow;

27Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

Systematic detection of capability leaks in stock
Android smartphones: Proceedings of the 19th
Annual Symposium on Network and Distributed
System Security,: 23-34.

Kirda E. and Kruegel C. (2012) A survey on automated
dynamic malware-analysis techniques and tools,
ACM Computing Surveys, 44(2):6.

Li L. Bartel L. Bissyandé TF. Klein J. Traon YL. Arzt
S. (2015) IccTA: detecting inter-component privacy
leaks in Android apps ICSE ‘15 Proceedings of
the 37th International Conference on Software
Engineering, 1(5):280–291.

Liu C. (2010). An analytical method for computing
the one-dimensional backward wave problem,
Computers, Materials and Continua, 13(3):219–234.

McCallum A., Nigam K. and Ungar L. (2000)
Efficient clustering of high-dimensional data
sets with application to reference matching, in
Proceedings of the KDD 2000, ACM, New York,
NY, USA.:169–178.

Michael, I., Kim, D., Jeff, P., Limei G., Nguyen, N. and
Martin, R. (2015). DroidSafe: Information-Flow
Analysis of Android Applications in DroidSafe.
(15): 8-11.

Mitra P., Murthy C. and Pal S. (2002) Unsupervised
feature selection using feature similarity, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 24(3): 301–312.

Nazar A., Seeger M. and Baier H. (2012) Rooting
Android—extending the ADB by an auto-
connecting WiFi-accessible service, in Information
Security Technology for Applications, P. Laud,
Ed., 7161 of Lecture Notes in Computer Science,
Springer, Berlin, Germany.:189–204.

Nickolai, Z., Silas, B., Eddie, K. and David, M.
(2006). Making information flow explicit in Histar.
Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI’06).
54(11):263–278.

Oberheide J., Veeraraghavan K., Cooke E., Flinn
J. and Jahanian F. (2008). Virtualized in-cloud
security services for mobile devices, in Proceedings
of the 1st Workshop on Virtualization in Mobile
Computing, ACM, Breckenridge, Colo, USA: 31–3.

Octeau D. McDaniel P. Jha S. Bartel A. Bodden
E. Klein J. (2013). Effective Inter-Component
Communication Mapping in Android with Epicc:
An Essential Step Towards Holistic Security
Analysis. (8): 543–558.

Ordonez C. (2003)Clustering binary data streams with
K-means, in Proceedings of the 8th ACM SIGMOD
Workshop on Research Issues in Data Mining and
Knowledge Discovery, DMKD ‘03, pp 12–19.

Pacheco F., Cerrada M., Sánchez R., Cabrera D., Li
C. and Valente J. (2017) Attribute clustering using
rough set theory for feature selection in fault
severity classification of rotating machinery. Expert
Systems with Applications, 71:69–86.

Peng, H., Gates, C., Sarma, B., Li N., Qi Y., Potharaju,
R., Nita-Rotaru, C. and Molloy, I. (2012). Using
probabilistic generative models for ranking risks of
android apps. In ACM CCS: 241–252.

Portokalidis G., Homburg P., Anagnostakis K. and Bos
H. (2010). Paranoid Android: versatile protection
for smartphones, in Proceedings of the Annual
Computer Security Applications Conference
(ACSAC ‘10), Austin, Tex, USA, pp 347–356.

Praba C. (2017) A technical review on data leakage
detection and prevention approaches, Journal
of Network Communications and Emerging
Technologies (JNCET).

Rastogi V., Chen Y. and Enck W. (2013)
AppsPlayground: automatic security analysis of
smartphone applications, in Proceedings of the 3rd
ACM Conference on Data and Application Security
and Privacy (CODASPY ‘13): New Orleans, La,
USA, 209–220.

Roemer, R. Buchanan, E. Shacham, H. and Savage,
S.(2012). Return-oriented programming: systems,
languages and applications, ACM Transactions on
Information and System Security,15(1):2.

Rose, S., Chandramouli, R. and Nakassis, A. (2009).
Information Leakage through the Domain Name
System. Paper presented at the Cybersecurity
Applications & Technology Conference. For
Homeland Security: Proceedings of the 8th
Australian Information Security Management: 2.

Shi. Y. (2004). Gatekeeper: Monitoring auto-
start extensibility points (ASEPs) for spyware
management. In LISA ’04: Proceedings of the 18th
USENIX conference on System administration.
USENIX Association, Berkeley, CA, USA, 33–46.

Salton G. and Buckley C. (1988) Term-weighting
approaches in automatic text retrieval, Information
Processing & Management, 24(5):513–523.

Salton G., Wong A. and Yang C. (1975) A vector space
model for automatic indexing, Communications of
the ACM, 18(11):613–620.

Shu X., Elish K. O., D. Yao, Ryder G. and Jiang X.,
(2015). Profiling user-trigger dependence for
Android malware detection, Computers & Security,
49:255–273.

Shu, X. Elish, K. O. Yao, D. Ryder, B. G. and Jiang,
X. (2015). Profiling user-trigger dependence for
Android malware detection, Computers & Security,
49:255–273.

28Official Journal of College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.

Okebule T. et al., 2022 AJINAS, 2 (1): 12-28

Smalley S. Craig R. (2013). Security Enhanced (SE)
Android: Bringing Flexible MAC to Android.
Proceedings of the 20th Annual Network and
Distributed System Security Symposium. (2):20–
38.

Spreitzenbarth, M. Schreck, T. Echtler, F. Arp, D. and
Hoffmann, J. (2015). Mobile-Sandbox: combining
static and dynamic analysis with machine-learning
techniques, International Journal of Information
Security, 14(2):141–153.

Thomas K., Li F., Zand A. (2017). Data Breaches,
phishing, or malware? understanding the risks
of stolen credentials, in Proceedings of the 24th
ACM SIGSAC Conference on Computer and
Communications Security, CCS 1:1421–1434.

Ullah F., Edwards M., Ramdhany R., Chitchyan
R., Babar M. and Rashid A. (2018). Data
exfiltration: A review of external attack vectors
and countermeasures. Journal of Network and
Computer Applications, 101:18-54.

Wang D., Cheng H., Wang P., Yan J. and Huang
X. (2018). A security analysis of honeywords,
in Proceedings of the Network and Distributed
Systems Security (NDSS) Symposium,:18–21.

Wang, D., Li, W. and Wang, P. (2018). Measuring Two-
Factor Authentication Schemes for Real-Time Data
Access in Industrial Wireless Sensor Networks.
IEEE Transactions on Industrial Informatics, 14:
4081-4092.

Wang J. (2005) Information security models and
metrics, in Proceedings of the 43rd annual southeast
regional conference on ACMSE43:178–184.

Wang W., Yang J. and Muntz R. (1997) Sting: a
statistical information grid approach to spatial data
mining: 186–195.

Wei, F., Roy, S. and Zhou, X. (2014) Amandroid: A
precise and general intercomponent data flow
analysis framework for security vetting of android
apps,: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications
Security, ACM: 1329-1341.

Wei, X, Sandeep, B. and Sekar R. (2006). Taint-
enhanced policy enforcement: A practical approach
to defeat a wide range of attacks. Proceedings of the
USENIX Security Symposium, pp 121–136.

Willems, C., Holz, T. and Freiling, F. (2007). Toward
automated dynamic malware analysis with
concatenated dynamic taint analysis. International
Conference on Availability, Reliability and
Security, pp 355–362.

Xiang C., Binxing F., Lihua Y., Xiaoyi L. and
Tianning Z. (2011). Andbot: towards advanced
mobile botnets, in Proceedings of the 4th USENIX
Conference on Large-scale Exploits and Emergent
Threats: 11.

Xu W., Xiang S. and Sachnev V. (2018) A cryptograph
domain image retrieval method based on paillier
homomorphic block encryption, Computers
Materials and Continua: 1–11.

Xu, J., Sung, A. H., Chavez, P. and Mukkamala, S.
(2004). Polymorphic malicious executable Yan,
L. K. and Yin, H. (2012). DroidScope: seamlessly
reconstructing the OS and Dalvik semantic
views for dynamic Android malware analysis,:
Proceedings of the 21st USENIX Conference on
Security Symposium, Bellevue, Wash, USA,:29.

Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P. and
Wang, X. (2013). Appintent: Analyzing Sensitive
Data Transmission in Android for Privacy Leakage
Detection. Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications
Security, Berlin,: 1043-1054.

Zhang T., Ramakrishnan R. and Livny M. (1997)
BIRCH: a new data clustering algorithm and
its applications. Data Mining and Knowledge
Discovery, 1(2): 141–182.

Zhang Y., Yang M., Xu B. (2013) Vetting undesirable
behaviors in Android apps with permission use
analysis, in Proceedings of the ACM SIGSAC
Conference on Computer and Communications
Security (CCS ‘13): 611–622.

Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han,
X. and Zou, W. (2012). SmartDroid: an automatic
system for revealing UI-based trigger conditions in
android applications: Proceedings of the send ACM
Workshop on Security and Privacy in Smartphones
and Mobile Device, pp 93-94.

Zhou, W. Zhou, Y., Jiang, X. and Ning, P. (2010).
DroidMOSS: Detecting Repackaged Smartphone
Applications in Third-Party Android Marketplaces.
Proceedings of the 2nd ACM Conference on Data
and Application Security and Privacy.

Zhou, Y. and Jiang, X. (2012). Dissecting Android
malware: characterization and eution, proceedings
of the 33rd IEEE Symposium on Security and
Privacy, San.

