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Abstract: In wireless rechargeable sensor networks (WRSNs), mobile chargers (MCs) are normally scheduled to deliver energy to the 

rechargeable sensor nodes (SNs). However, due to the energy consumption dynamicity of WRSNs, constructing optimal charging 

trajectories with minimized number of failed SNs due to energy deficiency ensuring a sustained WRSN operation at minimum MC’s 

movement cost is one aspect of the subject matter not yet thoroughly investigated. Thus, exploring this knowledge is the focus of this 

work. We applied shortest path algorithm, on-demand scheduling and multi-node charging methods to construct the energy cost-

effective charging path for the MC, a model we coined as Shortest Hamiltonian Cycle Traveling Salesman Problem (SHC-TSP). 

Comparative analysis proves the optimality of our solution against the notable nearest job next with pre-emption (NJNP) model in terms 

of minimizing MC’s traveling energy cost with energy savings of 3.9156% and 2.1940% for the two scenarios respectively examined. 

Keywords: Mobile Charger, On-demand Charging Schemes, Sensor Nodes, Shortest Path Algorithm, Wireless Rechargeable Sensor 

Networks 

 
1. INTRODUCTION 

      Sensor nodes (SNs) in wireless sensor networks (WSNs) are normally powered with small batteries of limited 

capacities and in many application scenarios are deployed into a risky, remote or inaccessible environments for long-

term operation, making replacement of the batteries highly laborious and costly [1]. Obviously, energy is a very precious 

but scarce resource in WSNs whose improvement and efficient utilization is currently a research hub in WSNs domain [2]. 

Credence to the recent technological advancements in wireless power transfer (WPT), a new solution using wireless 

mobile charger (MC) called wireless rechargeable sensor network (WRSN) emerged [3]. 

      The drawbacks of previous charging solutions which are mostly based on periodical and overall charging [4, 5] drive 

research for a more energy-efficient solution called on-demand [6]. In on-demand charging, the MC is schedule to locate 

and recharge only those SNs that used their energy below the threshold and send a request for recharging. Hence, it is more 

flexible, adaptive and energy-efficient [7]. However, due to the heterogeneity of WSNs’ energy consumption profiles and 

the corresponding finite MCs’ utility energies, planning an on-demand charging trajectory to mitigate the number of failed 

SNs due to battery energy depletion ensuring a sustained network operation at minimum MC’s moving energy cost is still a 

challenging research problem [8, 9] which this work investigates.  

      In a similar approach Zhao et al. [10] and Liu et al. [11] investigate charging scheduling problem to mitigate sensing 

holes and sustain the network’s connectivity based on partial charging. However, this approach requires the MC to 

travel continuously nonstop to meet the objective; thus, results to high MC’s energy consumption . Wang et al. 

[12] and Tian et al. [13] develop recharging models primarily to minimize nodes failure. But, to simplify their solution, 

they failed to consider the energy consumed by the MCs which contradicts real-life application. In their work, Wang et al. 

[14] solves the charging problem to reduce the network operating cost by minimizing the required number of MCs using 

NJNP approach. However, just like shortest path, NJNP scheduling increases the waiting time of faraway SNs which 

consequently leads to their premature death but presents a higher MC’s travelling cost as compared to the shortest path. 

The methodology applied in [15] to address similar problem, assumed that the MC has sufficient energy to charge all the 

SNs in every cycle while that applied in [16] divided the SNs into three categories (a, b and c) based on their residual 

energy levels and optimize their charging to conserve energy. However, these assumptions are too ideal and unrealistic. In 
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contrast, our assumption here is that the MC has limited energy that can be exhausted at any time, depending on the 

workload. 

 
2. THEORETICAL FRAMEWORK 

      This section defines the charging model and the relevant performance evaluation metrics being the method and 

parameters used to model and validate the solution, respectively. 

2.1 Charging Model  
      The charging model used in this work is the radio model [17] given by Equation (1): 

 

𝑃𝑟(𝑠𝑖 , 𝑀𝐶) =
𝐺𝑡𝐺𝑟𝜂

𝐿𝑝
(

𝜆

4𝜋(𝑑𝑖𝑠𝑡(𝑠𝑖,𝑀𝐶) + 𝛿)
)

2

𝑃𝑡                       (1) 

Where; 𝑃𝑡 is the transmit power of the MC, 𝑃𝑟  is the received power of the SN, 𝑑𝑖𝑠𝑡(𝑠𝑖 , 𝑀𝐶) is the Euclidian distance 

between the SN 𝑠𝑖 and the MC during charging, 𝐺𝑡 is the MC antenna gain, 𝐺𝑟  is the SN antenna gain, 𝐿𝑝 is the antenna 

polarization loss (0 ≤ 𝐿𝑝 ≤ 1), 𝜆 is the RF radiation wavelength, 𝜂 is the rectifier efficiency and 𝛿 is the parameter to 

adjust the Friis’ free space equation for short distance radio links whose value is 0.2316. 

2.2 Energy Utility (𝐄𝐮)  

      This is the MC’s energy efficiency index, defined as the ratio of the energy it used to recharged the SNs (payload 

energy, 𝐸𝑃𝐿) to the energy it consumed for movement (overhead energy, 𝐸𝑂𝐻) in each charging round, neglecting any 

energy loss [6, 18] as expressed in Equation (2): 

 

𝐸𝑢 =
𝐸𝑃𝐿

𝐸𝑂𝐻 =
∑ 𝑞𝑐 

𝑤
𝑖=1 𝐶𝑡 𝐶𝑒

𝑞𝑚 𝐷𝑝
                           (2) 

 

Where; 𝑞𝑐  is the charging power of the MC, 𝐶𝑡  is the duration that the MC charges the i
th

 SN 𝑠𝑖 , 𝐶𝑒  is the charging 

efficiency of the MC, 𝑞𝑚 is the MC’s moving energy consumption, 𝐷𝑝is the total distance traveled by the MC and 𝑤 is the 

number of SNs in  the charging schedule. 

2.3 Charging Time (𝐂𝐭)  

      This is the time taken by the MC to charge a SN 𝑠𝑖 [19] as presented in Equation (3): 

 

𝐶𝑡 =
𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑃𝑟
                              (3) 

 

Where; 𝑃𝑟  is the power received by the SN 𝑠𝑖 while 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑖𝑛 are the initial and residual energies of the SN 𝑠𝑖 being 

charged. 

      Hence, higher value of utility (𝐸𝑢) indicates that the MC has utilized more of its energy in charging the SNs than to 

travel; thus, indicating improved energy efficiency for the MC. 

 

3. MATERIALS AND METHODS 

3.1 Materials 

      To achieve the objectives of the research, Matlab R2022b simulation software was deployed. Internet, and online 

journals, textbooks and thesis were also consulted. 

 

3.2 Methods 

      This section discusses the methods adopted to model and simulate the system. 

3.2.1 Network modelling and charging behaviour: As a strategy to achieve the research goal, the multi-node charging 

approach which enables the MC to simultaneously charge multiple SNs within its charging range is found most appropriate. 

Thus, a state-of-the-art multi-node charging scheduling scenario which requires partitioning the two-dimensional (2-D) 

network region into a number of regular hexagonal cells is explored. In this method, the centre of each cell is considered as 

the docking spot [20]. This new approach enables the transformation of traveling path optimization problem into a 

charging scheduling problem; thus, saves waiting time, movement cost, and indeed improves the scalability of the 

recharging scheme [21]. The network model for a particular scenario is shown in Figure 1.  

      Let the network consists of a set of SNs 𝑆 =  {𝑠1, 𝑠2, 𝑠3 … … 𝑠𝑖 , … , 𝑠𝑛 }, 𝑖 ∈ [1, 𝑛], 𝑖 ∈ ℕ+, where ℕ+ represent a set of 

positive integers and 𝑠𝑖 is the 𝑖𝑡ℎ SN distributed over the network area. The coordinates of each SN 𝑠𝑖 ∈ 𝑆 is (𝑥𝑖 ,  𝑦𝑖). It is 

assumed that all the SNs are identical with same computing and communication capabilities. Also, each SN 𝑠𝑖 is equipped 

with the same rechargeable battery of capacity 𝐸𝑚𝑎𝑥. The minimum energy level for normal working of SN 𝑠𝑖 is 𝐸𝑚𝑖𝑛, 

which is the energy threshold for a SN 𝑠𝑖 to send a charging request. 
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Figure 1: Network model based on hexagonal cells structure for a particular scenario 

       

      Notice that the radius of the cells is initially adjusted to be equal to the charging radius of the MC (which is bearing RF 

power-caster with Omni-directional antenna). After serving the request of a cell, the MC moves to the next cell along its 

charging path, which is based on shortest Hamiltonian cycle that solves the traveling salesman problem (TSP) (optimal 

path). Note that the MC can follow clockwise or anti-clockwise direction to achieve the same path length. After serving the 

entire requests the MC will return to its base, recharge its battery and wait for the next round. This charging process is 

summarized in the flowchart shown in Figure 2.  

      Under the cellular structure, we denote 𝑑𝑖,𝑘 as the Euclidean distance from SN 𝑠𝑖 and its cell center 𝑘 while 𝐷𝑖,𝑗 denote 

the Euclidean distance between the cell centres of two cells containing requesting SNs along the Hamiltonian path, 

respectively represented by Equations (4) and (5). But, it should be noted that the distances between the SNs and the cell 

centre are different. Therefore, since the MCs’ charging power fades over its charging distance, the charging efficiency 

degrades over the charging distance too. Thus, each SN receives charging energy proportional to its location relative to its 

cell centre. Therefore; 

   

𝑑𝑖,𝑘 = √(𝑥𝑖 − 𝑋𝑘)2 + (𝑦𝑖 − 𝑌𝑘)2  , 𝑖 & 𝑘 ∈ ℕ+, 𝑖 ≠ 𝑘                   (4) 

 

𝐷𝑖,𝑗 = √(𝑋𝑖 − 𝑋𝑗)
2

+ (𝑌𝑖 − 𝑌𝑗)
2
  , 𝑖 & 𝑗 ∈ ℕ+, 𝑖 ≠ 𝑗                   (5) 

 

The number of SNs in a cell is a random variable. Some SNs whose battery energy lessens below 𝐸𝑚𝑖𝑛  will send a 

charging request to the base station (BS). Thus, a cell may have 𝑁 number of charging request. Hence, 0 ≤ 𝑁 ≤ 𝜌, where 

𝜌 is the maximum number of SNs in 𝑖𝑡ℎ cell. 

3.2.2 Charging planning and cycle time analysis: Let Q denote the set of cells containing at least one SN with charging 

request. Also, let 𝜏𝑘 represent the time the MC stays at the center of the cell to simultaneously charge all the SNs within. 

After 𝜏𝑘 the MC leaves the current cell and moves to the next cell along its charging path. In this solution, it is assumed 

that the MC visit a cell only once during a cycle. Let 𝑃 represent the path traversed by the MC during a cycle, which 

begins from and ends at the SS. Thus, 𝑃 may be represented by the relation in Equation (6): 
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𝑃 = (𝑐0, 𝑐1, … … , 𝑐𝑘 , … … 𝑐|𝑄|, 𝑐0), 𝑘 ∈ [1, |𝑄|], 𝑘 ∈ ℕ+                   (6) 

 

Where; 𝑐0 and 𝑐𝑘 represent service station (SS) and k
th

 cell centre visited by the MC, respectively. Now, let the distance 

between two neighbouring cell centres along the charging path be 𝐷𝑐𝑘,𝑐𝑘+1
, then 𝐷𝑐0,𝑐𝑘

 or 𝐷𝑐𝑘,𝑐0
 is the distance between SS 

and its neighbouring cell centre. 

 

 
Figure 2: Flowchart of the charging process 

 

The working state of the MC is divided into three: moving, charging and vacation. Thus, the moving time 𝜏𝑝 of MC should 

satisfy the condition in Equation (7): 

 

𝜏𝑝 = ∑   
𝐷𝑐𝑘,𝑐𝑘+1

𝑣

|𝑄|−1
𝑘=0 +

𝐷𝑐|𝑄|−1,𝑐0

𝑣
                         (7) 

 

The 𝑘𝑡ℎ cell centers traversed by the MC along the charging path is 𝑐𝑘, 1 ≤ 𝑘 ≤ |𝑄|. Also, denote 𝐷𝑝 as the distance of 

charging path; therefore, 𝜏𝑝 = 𝐷𝑝 𝑣⁄  is the time spent for traveling over the distance 𝐷𝑝. 

      In the charging state, the MC stays at the cell centre and charges all the SNs in the cell including the normal ones (those 

that are yet to requested for recharging). Thus, the charging time in the 𝑘𝑡ℎ cell is denoted as 𝜏𝑘. Then, the total charging 

time 𝜏𝑐 should satisfy the condition in Equation (8):  

 

𝜏𝑐 = ∑ 𝜏𝑘𝑘∈𝑄                                (8) 

After the MC finished visiting the 𝑄 cells, it will return to its SS to be serviced (recharge or replace its battery) and rest 

before the next tour. This resting period is usually called vacation time, denoted by 𝜏𝑣𝑎𝑐. Now, denoting 𝜏 as the cycle time 

spent by the MC, it is then modelled as in Equation (9): 

 

𝜏 = 𝜏𝑝 + 𝜏𝑣𝑎𝑐 + 𝜏𝑐                             (9) 
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The timing scale of the charging planning should consists of series of charging cycles, charging rounds (𝜏𝑝 + ∑ 𝜏𝑘)𝑘∈𝑄  and 

charging intervals (𝜏𝑣𝑎𝑐). Charging cycle means that all the cells in the network with SNs have been recharged at least 

once. 

 3.2.3 Shortest hamiltonian cycle traveling salesman problem (SHC-TSP): A Hamiltonian path (HP) is a path travelled 

from a source node to a destination node in a graph, visiting every node en route only once while a Hamiltonian cycle (HC) 

is a closed loop Hamiltonian path, in a graph, where every node (vertex) is visited only once [22]. Therefore, there may be 

many Hamiltonian cycles for every reference point (source node) in a graph. Thus, length of a graph is the sum of the 

weights (distances) of its edges (line joining adjacent nodes along the HP) [23]. However, the shortest of these cycles is 

referred to as the shortest Hamiltonian cycle (SHC), which is of significance to this work. 

      The shortest Hamiltonian path problem (SHPP) also called Dijkstra’s algorithm is similar to traveling salesman 

problem (TSP) [24]. Although, in SHPP the salesman can start his journey from anywhere, visit every city but do not have 

to return to starting city, while in TSP, the salesman can also start his journey from anywhere but have to return back to his 

starting location. Therefore, the SHPP algorithm is a path searching algorithm that iteratively generates all possible routes, 

from source to destination node, and select the one with the lowest cost (shortest distance) [25, 26]. 

      Hence, in this context, the problem is referred to as Shortest Hamiltonian Cycle Traveling Salesman Problem (SHC-

TSP). Note that each cycle depends on the number of requesting SNs in the schedule and each requesting SN belonging to 

a particular cell send the request alongside its location. Thus, the BS is aware of the location of each requesting SN 𝑠𝑖 

(𝑥𝑖 , 𝑦𝑖) and its corresponding cell center 𝑐𝑘, (𝑋𝑖 , 𝑌𝑖) and the location of the MC which it uses to calculate the Euclidian 

distances along the charging path and use it to plan the recharging schedule. The BS then communicates the schedule to the 

MC for implementation, as outlined in Table 1. 

 

Table 1: Shortest hamiltonian cycle traveling salesman problem (SHC-TSP) algorithm 

Algorithm 1: SHC-TSP 

Input: (𝑋𝑖 , 𝑌𝑖),  𝑐0,  𝑐𝑘 , 1 ≤ 𝑘 ≤ |𝑄| 
Output: Shortest travel path and path length 𝐿 (𝑚) 

1. Start 

2. Select a source cell, denoted as 𝑐0 (service station);  % the MC is at liberty to choose to move in clockwise 

or anti-clockwise direction  

3. MC move to a requesting cell 𝑐1 adjacent to 𝑐0;  % this determines the cycle direction (clockwise or anti-

clockwise)  

4. Check the distances from 𝑐1 to its adjacent requesting cells, find the one closer to it along the direction, say 

𝑐𝑘 and construct the edge (path linking 𝑐𝑘 with 𝑐1)   

5. Repeat steps 2 to 4 until all the requesting cells in 𝑄 are visited 

6. MC return to the source cell 𝑐0 after visiting the last cell in the schedule  

7. Plot the traveling path 𝑃 = (𝑐0, 𝑐1, … … , 𝑐𝑘 , … … 𝑐|𝑄|, 𝑐0) and return its length 𝐿 (𝑚) 

8. End.  

 
3.2.4 Simulation: It is assumed that a set of SNs are randomly dispersed over the 2-D network area. Reference to the 

model in Figure 1, the BS and the SS are located at the cell closest to the origin. The data rate 𝑅𝑖  (𝑘𝑏𝑝𝑠), 𝑖 ∈ ℕ+ is set to 

be randomly generated and assigned to each SN within the range[1, 100]. Let 𝐸𝑚𝑎𝑥 = 100 𝐽 => 𝐸𝑚𝑖𝑛 = 5% 𝑜𝑓 𝐸𝑚𝑎𝑥 =
0.05 × 100 = 5 𝐽 . The simulation was done in MATLAB R2022b environment. Table 2 is the composition of the 

parameters used.  

 

Table 2: The simulation parameters 

Parameter  Value  

Network area (m
2
) 40 x 40  

Number of nodes 5 

Radius of cells (m) 5 

Speed of MC (m/s)  5 

Charging radius of MC (m) 5 

Initial battery energy of SNs (J) 100 

SNs battery energy (SNBE) threshold of (J) 5 

Transmit power of the MC (w) 10 

MC’s antenna gain 3 

MC’s charging efficiency (𝐶𝑒) 0.5 
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Parameter  Value  

MC’s battery capacity (kJ) 2000 

MC moving energy consumption (J/m) 8 

SN’s antenna gain 2 

RF radiation wavelength (𝜆) (m) 0.0200 

Short distance adjustment parameter for Friis equation (𝛿) 0.2316 

Rectifier efficiency (𝜂) 0.9 

Antenna polarization loss (𝐿𝑝) 0.3 

Distance between MC and SN (𝑑𝑖𝑠𝑡(𝑠𝑖 , 𝑀𝐶)) (cm) 10 

 

4. RESULTS AND DISCUSSION 

      After scripting and running the solution codes in Matlab, several scenarios were observed, but this article captures only 

two for the purpose of describing the concept, as presented in Tables 3 and 4, and Figures 3 and 4 while Tables 5 and 6 are 

their corresponding distance matrices. The result shows the shortest path travelled by the MC to visit the centres of the 

requesting cells, stop and recharge all the nodes within, for two scenarios. In each scenario, the five indexed nodes are 

randomly dispersed within the network area. The centres of the requesting cells, the travelled path and its length are 

recorded in each corresponding table of the captured scenarios.  

Table 3: Simulation data for scenario 1 

Node index Cell centre (𝑿𝒊, 𝒀𝒊) Traveling path Path length (m) 

0 

1 

2 

3 

4 

5 

(3,0) 

(3,24) 

(28.8,6) 

(3,24) 

(24.5,9) 

(7.3,21) 

𝑐{0} → 𝑐{1,3} → 𝑐{5} → 𝑐{4} → 𝑐{2} → 𝑐{0} 81.9470 

 
Table 4: Simulation data for scenario 2 

Node index Cell centre (𝑿𝒊, 𝒀𝒊) Traveling path Path length (m)  

0 

1 

2 

4 

5 

(3,0) 

(11.6,24) 

(20.2,6) 

(7.3,9) 

(3,30) 

𝑐{0} → 𝑐{2} → 𝑐{1} → 𝑐{5} → 𝑐{4} → 𝑐{0} 

 

 

80.0618 

 

 

 
Table 5: Distance matrix for scenario 1 

Node index 0 1 2 3 4 5 

0 0 24 26.4885 24 23.3077 21.4357 

1 24 0 31.4585 0 26.2155 5.2431 

2 26.4885 31.4585 0 31.4585 5.2431 26.2155 

3 24 0 31.4585 0 26.2155 5.2431 

4 23.3078 26.2155 9.2431 26.2155 0 20.9724 

5 21.4357 5.2431 26.2155 5.2431 20.9724 0 

 
Table 6: Distance matrix for scenario 2 

Node index 0 1 2 4 5 

0 0 25.9443 18.2165 9.9745 30 

1 25.4943 0 19.9489 15.6042 10.4862 

2 18.2165 19.9489 0 13.2442 29.5269 

4 9.9745 15.6042 13.2442 0 21.4357 

5 30 10.4862 29.5269 21.4357 0 

 

Table 7: Comparing energy utility (𝐸𝑢) between SHC-TSP model and NJNP model 

Scenario SHC-TSP Energy Utility  NJNP Energy Utility  Difference (m) Savings (%) 

1 407.0526 376.3769 30.6757 3.9156 

2 333.3099 318.9980 14.3119 2.1940 
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      In the first case presented in Table 3 and Figure 3, all the 5 SNs requested for recharging with 2 out of the 5 (nodes 1 

and 3) falling in one cell; thus, the MC charged them simultaneously resulting to a total travelled distance of 81.9470 

meters. In the second case, presented in Table 4 and Figure 4, 4 out of the 5 nodes requested for recharging (node 3 did not 

request) with all of them falling in different cells; thus, the MC had to visit and recharged them individually, covering a 

distance of 80.0618 meters. 

      The distance matrices for the two scenarios are calculated based on Equation (2) and presented in Tables 5 and 6, 

respectively. In scenario 1, based on NJNP, the MC routed through the path 𝑐{0} → 𝑐{5} → 𝑐{1,3} → 𝑐{4} → 𝑐{2} → 𝑐{0} to 

cover a longer distance of 88.6259 meters. While in scenario 2, based on NJNP, the MC traversed through the path 𝑐{0} 

→ 𝑐{4} → 𝑐{2} → 𝑐{1} → 𝑐{5} → 𝑐{0} to cover a distance of 83.6538 meters. Comparing the obtained energy utility simulation 

data for the two scenarios, as presented in Table 7 and Figure 5, shows that our new SHC-TSP model proves superiority 

over NJNP model implemented by [19] in terms of minimizing the MC’s traveling energy cost with savings of 3.9156% 

and 2.1940% respectively.  

 

 
Figure 3: Travelling path for scenario 1 

 

 
Figure 4: Travelling path for scenario 2 
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Figure 5: Comparing energy utility: SHC-TSP model versus NJNP model 

 

5. CONCLUSION 

      Being powered with small batteries of limited capacities and the requirement for continuous operation, makes energy a 

scarce resource in WSNs whose improvement and efficient utilization is currently a research hub in WSNs domain. The 

research work planned an optimal charging trajectory able to minimize MC’s unnecessary movement energy wastages so 

as to have enough for meeting the demands of the network SNs based on SHC-TSP, under the limited energy constraint of 

the MC which can be exhausted at any time, depending on the workload. Comparing the simulation result with that of the 

notable NJNP model shows that our SHC-TSP model is superior with a success rate of 3.9156% and 2.1940% energy 

savings for the two analysed scenarios, respectively. Thus, the research delivered a more promising energy-efficient 

recharging solution for achieving energy sustainability in WRSNs. 
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