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Abstract: Vibration analysis is commonly used to provide valuable insights into the condition of a machine, which is crucial for ensuring 

reliability and reducing maintenance costs. However, analysis of vibration signals using artificial neural network (ANN) is mostly via 

development of classification models, which cannot be suitably applied to several varied machine types and specifications. This study 

investigates the use of ANN in the clustering of vibration signals for machine condition monitoring of several rotating machines. Data 

obtained from different rotating machines for 4 years was utilized for the study. The data contained values of vibration signals taken at 

12 different pickup points, power ratings, year and equipment location. The obtained data was preprocessed and analyzed statistically. 

Then, silhouette scores and within-cluster sum of squares (WCSS) were used to obtain the optimum number of clusters for the analysis. 

Afterwards, different clusters were created using ANN, which were then explored to gain insights for potential applicability of the 

technique for assessment of the conditions of rotating machines. The result of ANOVA showed that there were significant variations 

between readings obtained from different pickup points and readings obtained from the different machines, with p-values far less than 

0.05 for both cases. It was found via silhouette and WCSS that 9 was an optimum number of clusters for the analysis. Calculated mean 

of standardized values informs that 6 clusters contained machines with different forms of faults, having positive mean values far greater 

than 0. Also, there were 2 clusters with machines having good working conditions with negative mean values, while one cluster had 

machines that were moderately okay with mean values close to 0. The study has shown that ANN can effectively cluster a set of machines 

based on their conditions using vibration signals taken at different pick-up points. The developed framework is a suitable alternative to 

ANN-based classification methods which have limited applicability.  
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1. INTRODUCTION 
Rotating machines are extensively utilized for various applications in industries. For better productivity and 

profitability, the conditions of these machines need to be monitored to ensure that they operate effectively without 

unexpected breakdown. Several factors including environment, aging, wear, fatigue and design and operating conditions 

can lead to various mechanical faults [1]. These mechanical faults can cause unplanned downtime if not detected early 

leading to negative economic consequences [2, 3]. Traditional condition monitoring techniques are limited by high costs 

and inefficiencies [4]. There is thus a critical need for efficient techniques for monitoring the condition of rotating 

machines, to swiftly detect emerging faults and reduce financial losses that could result from unexpected breakdowns. 

Faults and failures in machines have been linked with recognizable patterns of vibration signals [5]. These recognizable 

vibration patterns can provide insights into the condition of the machine and help to identify existing faults [6, 7]. 

Vibration signals are generally utilized for monitoring the condition of machines by exploring the patterns of the signals to 

using suitable algorithms. This task of analyzing and interpreting vibration signals is, however, not an easy task because of 

the nonlinear dynamic nature of machines and several influencing factors. Notwithstanding, vibration analysis is well dated 

and has evolved over the years, and currently, it is commonly applied for monitoring the condition of rotating machines [8], 

[9], [10].  

Continued improvements in artificial intelligence and machine learning algorithm has made it possible to explore new 

ways of machine condition monitoring using vibration signals. ML algorithms, specifically ANN that models the neural 

network of the human brain, have proven themselves to have high potential in learning and understanding the pattern of 

data. From available studies it was evident that the use of ANN outperformed the earlier conventional methods in 

efficiency of fault detection by a significantly high percentage [9, 11, 12]. Furthermore, it can be understood that ANN 

may improve fault diagnosis performance and decrease false alarms originating from diverse rotating machines compared 
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to conventional approaches [13], which suggested that ANN has good potentials for application in machine condition 

monitoring systems. 

From the several review journals [9, 14, 15, 16], ANN-based research pertaining to the use of vibration signals for 

machine condition monitoring have mainly focused on the methodology of developing and applying ANN-based 

classification models, which grossly depends on learning from labelled dataset. These classification algorithms have some 

drawbacks like poor performance on an imbalanced data set or where in the dataset had fewer rates of fault or fails to 

include some fault types [17]. Also, the models are prone to overfitting which means that their predictions might be off in 

some unfamiliar cases [18]. There is still a notable gap in the literature regarding implementation of ANN for clustering 

vibration signals which can cater for the challenges associated with ANN-based classification models. The utilization of 

ANN for clustering vibration signals offers a promising approach to automate the identification of distinct patterns 

associated with different machine conditions. However, extensive analyses of the existing and potential methods of ANN-

based clustering are still scarce, indicating that further studies should be conducted in order to adequately assess potential 

of this approach for fault diagnosis of the rotating machines. 

This study aims to develop and evaluate an ANN-based framework for clustering vibration signals for machine 

condition monitoring of a set of rotating machines with different specifications. Our goal is to address the limitations 

associated with the use of ANN-based classification models by investigating a novel approach of ANN-based clustering 

method for monitoring the condition of rotating machines, which will ultimately lead to more effective maintenance 

procedures and decreased equipment downtime. 

The collection of vibration signals has become easier by the use of advanced sensor technologies [19]. The complexity 

and amount of data created by these signals often proves tedious to analyze using for traditional methods [20, 21], whereas 

other advanced ANN-based classification techniques have limitations [18]. The findings from this work has potentials of 

use for real-time machine condition monitoring of several rotation machines with varied speciation within a complex or 

organization, as it can effectively group machines based on the similarities in the patterns of vibration signals and detect 

anomaly. This can potentially save cost, reduce false alarm, and improve accuracy of fault detection. 

2. METHODOLOGY 

2.1 Data Collection /Acquisition of Vibration Signal Datasets 

The data utilized for this study consists of vibration signals collected at the Warri Refining and Petrochemicals 

Company (WRPC) Limited, Ekpan-Warri, Delta State. The vibration signals were measured from the different centrifugal 

pumps located within different departments at the refinery. The machines considered were motors, pump, compressors and 

turbines. It covered a span of 4 years (2015 -2018).  During the data collection process, experts were utilized throughout. 

The vibration signals were collected using a IRD digital vibrometer shown in Figure 1. It is known for its accuracy and 

reliability in capturing dynamic vibrations. The instrument features frequency range of 100 – 1000 Hz, velocity range of 0-

1000 mm/sec, making it suitable for a wide range of industrial applications.  

The vibrometer was strategically placed at 6 different points to capture vibration signals representative of various 

components and potential fault zones. To collect the vibration signal, the pickup-cable was attached to the end of the 

vibrometer’s receptacle point. Then the other end of the pickup-cable is positioned at the most suitable position for 

collecting the most useful vibration signals. Vibration readings were taken at the inboard and outboard of the machines. 

The device then measures vibration velocity in the direction or the axis in which the device is placed. Values taken at the 

horizontal, vertical and axial directions were recorded for each procedure. The positioning of the pickup-cable to get 

horizontal, vertical and axial readings is shown in Figure 2. 

All necessary details were included during data gathering, including machine specifications described by their tags, 

date, power of machine, and pickup point. Obtained values of vibration signals were in two categories, which are in-board 

and out-board signals. The readings were taken twice for each pickup point of for the three (3) different directions 

(horizontal, vertical and axial). The data was labelled as H, V and A for horizontal, vertical and axial readings, respectively, 

and it is accompanied with a number 1 or 2 which indicates the reading as 1
st
 or second, at the in-board or out-board, 

respectively. For instance, H1 means horizontal in-board reading. 

2.2 Preprocessing of Vibration Data 

The raw vibration data was subjected to pre-processing steps to enhance signal quality. This included cleaning to 

remove wrong data and missing values as well as normalization for consistency across datasets. Also, all evident data 

errors or outliers that could skew the analysis's findings was removed or corrected. A simple formula shown in Equations 1 

and 2 that computes outliers were used to calculate and remove all outliers from the readings. Vibration signals greater 

than the upper limit or lesser than the lower limit were then removed. 

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑄1 − 1.5 ∗ 𝐼𝑄𝑅                       (1) 

𝑈𝑝𝑝𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 = 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅                       (2) 

Q1 is first quartile, IQR is the interquartile range, Q3 is the third quartile 
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At the end, the data was reduced to a total of 374 samples, and was statistically analyzed. To address issues of differing 

scaling, all the measured variables were transformed by calculating their z-scores using Equation 3. This helps in 

preventing bias toward variables with higher magnitudes. Calculated Z-scores are known effective way of scaling data.  

𝑧 =
𝑥−𝜇

𝜎
                              (3) 

Z is the z-score 

X is the measure signal being transformed 

𝜇 is the mean 

𝜎 is the standard deviation 

 

 

Figure 1: Equipment used for taking vibration readings 

 

 
      Horizontal (H)                          Vertical (V)                              Axial  (A) 

Figure 2: Positioning the device for taking vibration readings 

2.3 Cluster Analysis 

Two approaches were used to determine the number of clusters suitable for the analysis. They are the elbow method 

and the silhouette plot techniques. The first procedure involves plotting the cost function or the within-cluster sum of 

squares (WCSS) versus the number of clusters. The second method, which was the silhouette analysis, calculates an 
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object's degree of similarity to its own cluster in relation to other clusters. Every data point generates a silhouette score, and 

the average score over all points was used to determine the ideal number of clusters.  

The ANN clusters observations in two basic stages to address clustering difficulties. In the first, the network was 

trained for a particular data set using the pre-determined learning rule. This phase is referred to as training or learning. The 

second step, often referred to as the recall stage, is classifying the observations. In summary, the ANN is divided into 

layers: output and input layers. The nodes used to input data are located in the input layer. The output layer produced the 

user's readable and understandable output. There may exist other levels or hidden strata beyond these two. As seen in 

Figure 3, the output of each layer becomes the input of the following layer until the signal reaches the output layers.  

 

 

Figure 3: Illustration of the neural network for clustering 

This study utilized the Kohonen's Self-Organization Map, which is one of the most well-known ANNs  algorithm for 

data clustering [22]. The netwmingork is made up of two layers which are the input layer and the Kohonen layer, which 

transform n-dimensional input to two dimensions by typically arranging neurons in a two-dimensional layout. In essence, it 

is a mapping that preserves topology between the input space and the clusters that a self-organizing competitive network 

provides. The weight vector associated with the node l is given by Equation 4  

 𝑤𝑙 = (𝑤1𝑙𝑤𝑙2 … 𝑤𝑙𝑝)
′
                           (4) 

where 𝑤𝑙𝑗 indicates the weight assigned to input 𝑥𝑗 to the node l, k is the number of nodes (cluster seeds), and p is the 

number of variables.  

𝑥 = (𝑥1𝑥2 … 𝑥𝑝)
′
 is the mathematical representation of the input vector (training case).  

The network picks each object in the training data set at random. An imbedded process known as Kohonen's learning 

law locates the node that is most similar to each training example, and uses that information to shift the "winning" node 

closer to the training case. A portion of their distance is used to displace the node and training case apart. The learning rate 

specifies the fraction. 

The distance di between the weight vector and the input signal is calculated for each object i in the training data set. 

The node with the lowest di wins when the tournament begins. A learning rule is then applied to modify the weights of the 

winning node. The non-winning nodes' weights remain unchanged.  To compare each node with each object, the Euclidean 

distance is usually used, though any other metric could be chosen. The Euclidean distance between an item with the weight 

vector 𝑤𝑙 = (𝑤1𝑙𝑤𝑙2 … 𝑤𝑙𝑝)
′
 and the observed vector 𝑥 = (𝑥1𝑥2 … 𝑥𝑝)

′
. is given by Equation 5. 

𝑑(𝑥, 𝑤𝑖) = [∑ (𝑥𝑗 − 𝑤𝑖𝑗)^2 
𝑝
𝑗=1 ]

1/2
                      (5) 

Let Xi be the input vector for the ith training case, be the learning rate for the sth step, and wsl be the weight vector for 

the lth node on the sth step of the algorithm. A training case (Xi) is chosen at each stage, and the index q of the cluster that 

wins is ascertained Equation 6. 

𝑞 = arg𝑙 min ||𝑤𝑙
𝑞

− 𝑋𝑖||                          (6) 

For the winning node, the Kohonen update rule is provided by equation 7. 
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𝑤𝑞
𝑠+1 = 𝑤𝑞

𝑠(1 − 𝛼2) + 𝑋𝑖𝛼
𝑠 = 𝑤𝑞

𝑠 + 𝛼𝑠(𝑋𝑖 − 𝑤𝑞
𝑞

)                  (7) 

Where 𝑤𝑞
𝑠+1 = 𝑤𝑙

𝑠  for each node that is unsuccessful. The literature on neural networks and machine learning has 

created a plethora of alternative techniques. It is also possible to employ neural networks that modify the weights of the 

victorious node and the nodes in its predetermined neighborhood [23].  

2.4 Implementation of the neural network 

The neural network for the clustering of vibration signals was implemented in MATLAB, and it involves several steps, 

which are development of the network architecture design, training, and evaluation.  The preprocessed data, a total of 374 

samples, was loaded into the MATLAB workspace, and then split into 70%, 15% and 15% for training, validation, and 

testing sets, respectively. 

The architecture of the neural network includes the number of 3 layers (input layer, a SOM layer or hidden layer and 

the output layer), nodes in each layer, and the activation functions. The network had 15 input layers, based on the 15 input 

variables of the data collected as discussed in section 2.1, 9 SOM layers based on the predetermined number of clusters 

suitable for the analysis as discussed in section 2.3, and 9 output layers which constitute the number of clusters to be 

determined.  

The training process was completed in less than a minute, and three major checkpoints to evaluate the model 

performance were included while saving the results intermittently. The ANN model passed through 200 iterations during 

the training phase. The learning rate which controls the step size of weight adjustments during training was initially set to 

0.1, and it usually decreases over as raining progresses. 

The Artificial Neural Network (ANN) was trained on a system with the following specifications: 

Processor: Intel® Core™ i7-12700K (12 cores, 3.6 GHz base frequency) 

Memory: 32 GB DDR4 RAM 

Graphics Processing Unit (GPU): NVIDIA® GeForce RTX 3060 (12 GB GDDR6 memory) 

Operating System: Windows 11 Professional (64-bit) 

The default topology function, “hextop” (Equations 8 and 9), was used in the study based on its popularity and 

reliability. 

𝑥 = 𝑖. 𝑑                              (8) 

𝑦 = 𝑗 ∗ 𝑑 ∗
√3

2
+ (𝑖 𝑚𝑜𝑑 2) ∗ 𝑑 ∗

√3

4
                      (9) 

Where 𝑑 is the distance between adjacent nodes; 𝑖, 𝑗 are the grid indices of the node;  

The term (𝑖 𝑚𝑜𝑑 2) is used to alternate the vertical position of nodes in every other column, creating the characteristic 

staggered rows of a hexagonal grid. It is 0 if 𝑖 is even and 1 if 𝑖 is odd. It is determined using Equation 10 

(𝑖 𝑚𝑜𝑑 2) =
1−(−1)𝑖

2
                           (10) 

The distance function measures the topological distance between neurons during training based on their topology. The 

default distance function, which is the “linkdist” function (Equation 11) was utilized for this study. 

𝑙𝑖𝑛𝑘𝑑𝑖𝑠𝑡((𝑖1, 𝑗1), (𝑖2, 𝑗2)) = max (|𝑞1 − 𝑞2|, |𝑟1 − 𝑟2|, |𝑠1 − 𝑠2|)              (11) 

Where (𝑖, 𝑗) are the cartesian grid coordinates of the neurons in the SOM; 𝑞, 𝑟, 𝑠) are the coordinates of the hexagonal 

grid.  

3. RESULTS AND DISCUSSION 

3.1 Statistical Description of the Data Set 

The mean and maximum values for the readings taken at 12 different pickup points is estimated and shown in Figure 4. 

As can be observed, there are variations in the maximum and average values, with axial outboard reading taken at point 1 

(A1) being the minimum. Also, the average vertical outboard reading taken at point 4 is low. Point A3 (axial reading at 

point 3) recorded the highest average vibration level, indicating a potential hotspot for fault investigations. On the other 

hand, point H3 (horizontal pickup point) recorded the highest maximum vibration level, suggesting occasional spikes in 

vibration at such locations that may need attention. The high average vibration at point A3 could be due to its proximity to 

a rotating component or a fault, likewise other areas with high vibration levels.  

In this study, a two-way analysis of variance (ANOVA) was performed on the vibration signals collected from 12 

pickup points of the rotating machines. The results of the ANOVA test are summarized in Table 1. The table shows the 

values of F-statistic, p-value, and F-crit. The p-value is less than 0.05 when different vibration reading taken at different 

location of sensors were compared, indicating that the vibration reading measured at different pickup points differ 

significantly. This variation in vibration levels across different points is in-line with previous studies in which vibration 

level varies significantly from one point to another of a machine [24, 25]. Thus, it is important to consider recording 

vibration signals at several different points for a more accurate result when adopting vibration signals for machine 
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condition monitoring of rotating machines. Furthermore, the there is a significant difference in vibration levels across 

readings taken at different times. This could be as a result of varied factors like operating conditions or presence of a fault 

[26, 27]. Further analysis was thus conducted to determine the specific differences between these points and their 

implications for the machine's health and performance. 

 

 

Figure 4: Average and maximum values of vibration signals for readings taken at different points and positions 

Table 1:  Analysis of variance for the vibration signals 

ANOVA 

      Source of Variation SS Df MS F P-value F crit 

Different Readings 9999.533 373 26.8084 7.055636 2.4E-235 1.130512 

Location of sensor 1684.38 10 168.438 44.33078 7.22E-84 1.833234 

Error 14172.4 3730 3.799572 

   

       Total 25856.32 4113         

3.2 Optimum Number of Clusters 

In this study, the silhouette plot and within-cluster sum of squares (WCSS) were used to identify the optimum number 

of clusters for our dataset. Starting from 3 to 10 clusters, the silhouette score and WCSS was determined for each 

clustering. While WCSS gauges the clusters' compactness, the silhouette score assesses how similar each element is to its 

own cluster in relation to other clusters [28]. The silhouette scores and WCSS values were plotted against the number of 

clusters and shown in Figure 5. The silhouette plot reveals that the optimum number of clusters was k = 7 with an 

approximate silhouette coefficient of 0.69. Similarly, the WCSS plot shows a significant drop in WCSS score when the 

number of cluster equals 7, beyond which the drop in values of WCSS score become less pronounced. It is thus, an 

indication that clustering the data into 7 clusters would be very effective. However, for clustering with ANN, only perfect 

squares can be used as the number of clusters because the technique creates clusters by dividing into square planes with 

equal number of horizontal and vertical rows [23]. Hence nine clusters is utilized for this study being the smallest perfect 

square number close to 7.  

3.3 Results of ANN Cluster Analysis using Self-Organizing MAP 

During the network training, each neuron's weight vector moves to become the hub of a cluster of input vectors. ANN 

training for clustering uses Self-organizing Map (SOM) that aids the visualization of a high-dimensional input space in the 

two dimensions of the network topology. There are nine neurons in this network, and the topology of nine self-organizing 

neurons arranged in a three-by-three hexagonal grid was mapped. Every neuron has acquired the ability to represent a 

distinct class of each machine, with neighboring neurons generally representing classes that are comparable. Figure 6 

displays a SOM layer with neurons represented as gray-blue patches and red lines indicating their immediate neighbors. 
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Figure 5: Silhouette scores and WCSS values versus number of clusters 

 

 

Figure 6: 2D diagram showing the SOM neighbor connections 

The SOM neighbor distances or U-matrix, which shows the distance, expressed in Euclidian units, between the class of 

each neuron and its neighbors, is shown in Figure 7. The blue hexagons stand in for the neurons. The red lines link 

neighboring neurons. The colors in the regions with red lines indicate the distances between the neurons. Darker colors 

indicate greater distances, whereas lighter colors indicate smaller distances. This implies that bright connections represent 

parts of the input space with substantial connectedness. Conversely, dark links show classes corresponding to remote, 

sparsely populated feature space locations. With extended borders of black connections dividing major portions of the 

input space, the classes on either side of the boundary show machines with very different features. A band of black 
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segments extends from the lower-left corner to the centre. The SOM network appears to have divided the machine readings 

into several distinct groups. 

 

Figure 7: SOM neighbour weight distances 

Figure 8 shows a weight plane for each of the fifteen input qualities, which are representations of the weights 

connecting each of the nine neurons to each of the inputs in the 3x3 hexagonal grid. Each ith subplot shows the weights 

from the ith input (variable utilized in the study) to the layer's neurons; these are grouped according to the machine's power 

rating to the 12 separate pickup locations, then by year and equipment location. Darker colors correspond to larger weights, 

while input variables with similar colour gradients show a high correlation between them. Red indicates the strongest 

positive connections, blue indicates the majority of negative connections, and black indicates zero or no connections. It is 

evident that features 1 (power rating) and 15 (equipment location) have a high proportion of black color, implying that 

these two variables had minimum or no influence in grouping the data set into distinct clusters. This finding suggests that 

the condition of machines with different power ratings and at different location can be assessed simultaneously using 

ANN-based clustering technique since they have minimum effect on how they are grouped. Expectedly, a machine's 

functionality shouldn't be impacted by its location unless there are differences in the operators and maintenance staff and 

procedures. This effect would not likely affect how they are clustered using ANN because the algorithm would likely 

group machines with similar characteristics regardless of their conditions. This means that a set of machines with related 

vibration signals would likely be in the same groups.  

During SOM training, the weight vector of each neuron migrates to become the center of a cluster of input vectors. 

Each of these hits has a cluster label that has been determined and plotted, as seen in Figure 9. The fewest machines were 

found in cluster 1 and the greatest number in cluster 6. The smallest numbering cluster contained two machines, while the 

largest cluster contained 100 machines. Neurons with high hit counts—100, 58, and 68 machines, indicating classes with 

comparable densely populated regions of the feature space. On the other hand, classes with few hits indicate sparsely 

populated sections of the feature space. 

3.4 Statistical Analysis of Standardized Values of Each Cluster 

Analyzing the mean values of the scaled dataset can provide useful insights as to how each cluster deviates from the 

overall mean value of the dataset. This can provide suggestive information as to which clusters have machines that could 

be faulty due to higher vibration signals relative to the mean of the overall data set. Thus, the data were scaled, and then the 

mean of the different readings at different pickup points were determined for all machines in different clusters identified 

through Self-Organizing Maps (SOM) analysis. This analysis provides a comprehensive view of the vibration patterns 

exhibited by different clusters of machines, aiding in the identification of potential issues and the formulation of targeted 

maintenance strategies. 
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Figure 8: Weight plane for the different features 

 

 

Figure 9: Cluster labels and the number of machines in each cluster 

The average standardized mean values of inboard and outboard readings for the nine different clusters are shown in 

Figures 10 and 11, respectively, while those for each pickup point is shown in Tables 2 and 3 for inboard and outboard 

readings respectively.  

As can be observed, the 1
st
 and 3

rd
 Clusters had very low standardized average mean values for outboard and inboard 

readings compared to the overall mean of the dataset, and the average vibrations signals are less than zero for all pickup 

points. The 9
th

 cluster had machines with overall standardized average mean for inboard and outboard readings as well as 

standardized average values at all pickup points far greater than zero. This suggests that machines grouped in the 1
st
 and 3

rd
 

clusters are operating under normal conditions with minimal vibrations, while those grouped in the 9
th

 clusters are in a very 

critical conditions because machines with minimal vibrations are likely to be less defective and in good working condition 

[29]. This could be indicative of various issues such as misalignment, unbalanced components, or bearing faults [30, 31], 

which are commonly associated with increased vibration levels. The total number of machines in this group are 105 

The set of machines in the 2
nd

 and 5
th

 Clusters 2 and 5 have standardized mean values greater than zero for of inboard 

readings and less than zero for outboard readings. This is an indication that the machines in these categories have defects 

which are related to inboard components. Conversely, machines in cluster 7 had overall standardized average values of 
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outboard readings greater than zero for while that of inboard readings is less than zero. This suggest that these machines 

may be having issues related to outboard components [25]. The significance of this finding is that a more reliable 

recommendation can be made regarding the machines for proper inspection and fault diagnoses. 

Machines in the 4
th

, 6
th

 and 8
th
 clusters had overall mean values that are close to 0. This indicates that these machines 

are somewhat similar to the overall average of readings from all machines put together. These clusters of machines 

demonstrate moderate mean vibration readings, indicating a potential for vibration-related issues that may require attention. 

The moderate values are suggestive of issues that are not yet critical but may require attention. Machines in these clusters 

may benefit from further physical inspection to identify and address any underlying causes of vibration patterns that are a 

bit higher than normal.  

Overall, the cluster analysis based on inboard readings provides valuable insights into the vibration characteristics of 

the machines, enabling maintenance teams to prioritize their efforts effectively. Machines in clusters with higher vibration 

levels may require immediate attention to prevent further damage, while those in clusters with lower vibration levels may 

benefit from routine maintenance to ensure continued optimal performance. The standardized average values at the 

different pickup points can serve as a pointer to the location of the element within the machine that may be bad.  

 

 

Figure 10: Average inboard reading for the different clusters 

 

 

Figure 11: Average out-board reading for the different clusters 

Table 2: Scaled data mean values for inboard readings of the different clusters 

1 2 3 4 5 6 7 8 9
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Cluster 

label 

V1 H1 A1 V2 H2 A2 

1 -0.88647504 -1.05167 -0.88882 -0.88807 -1.05016 -0.84277 

2 0.79928739 0.480295 0.839877 0.267203 0.686705 0.126237 

3 -0.28714876 -0.28548 -0.50823 -0.4208 -0.42445 -0.33333 

4 -0.18151984 0.128635 0.055069 0.073087 0.107659 -0.15288 

5 -0.06183528 0.109336 -0.09864 0.815965 0.186504 0.809344 

6 -0.15666571 -0.10664 -0.13057 -0.03205 -0.01603 -0.01281 

7 -0.06762657 -0.06388 -0.24248 -0.28458 -0.2323 -0.24667 

8 -0.13691017 -0.17349 -0.14215 -0.16976 -0.12404 -0.1454 

9 0.43132847 0.403686 0.719168 0.248504 0.224832 0.217153 

 

Table 3: Scaled data mean values for outboard readings of the different clusters 

Cluster 

label 

V3 H3 A3 V4 H4 A4 

1 -1.20739138 -1.09555 -0.9263 -1.11345 -1.04326 -0.9543 

2 0.09147964 0.194174 -0.12088 0.132472 0.134851 0.026146 

3 -0.41677722 -0.2759 -0.33749 -0.5447 -0.39492 -0.3787 

4 -0.22082412 -0.54305 -0.11965 0.725376 -0.09074 -0.08601 

5 -0.19501331 -0.136 0.034205 -0.30285 -0.35602 -0.17945 

6 -0.18975193 -0.20635 -0.18915 -0.11263 -0.15761 -0.17526 

7 0.61369442 0.179655 0.526454 0.245439 0.310865 0.564504 

8 -0.21053339 -0.23245 -0.10228 -0.14506 -0.19273 -0.1559 

9 0.44774219 0.990266 0.278111 0.559323 0.801121 0.353845 

 

4. CONCLUSION 
This research has examined the application of Artificial Neural Network (ANN) clustering technique for condition 

monitoring of rotating machines via the clustering of vibration signals to address the problems associated with the ANN-

based classification models. ANN clustering capability of accurately clustering vibration patterns for capturing the 

performance characteristics of group of rotating machines with different specifications have been established. It could be 

applied in real-time condition monitoring in industrial environments. Additionally, for the design of ANN models that used 

self-organizing map, the identifying of the right number of clusters in which the rotating machines can be grouped was 

done effectively by silhouette score and Within-the-cluster-sun-of-squares. The computational analysis yields insights that 

can be used to identify the best setup for vibration signal analysis. The study's findings can be useful for various industries 

that utilize several rotating machines. Application of ANN clustering approaches for condition monitoring of rotating 

machines may cut downtime, enhance maintenance planning, and eventually extend the life of equipment. This can make it 

possible to experience major cost savings and improvement of operational efficiency. By demonstrating that it is possible 

to perform ANNs clustering for the analysis of vibration signals of rotary machines, this work contributes to the field of 

machine condition monitoring. The findings underscore the relevance of applying machine learning strategies to enhance 

the reliability and efficiency of protecting machinery maintenance practices amid increasing costs and optimal performance 

of industrial systems. 
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